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Abstract
A general defense strategy in computer security is to increase
the cost of successful attacks in both computational resources
as well as human time. In the area of binary security, this is
commonly done by using obfuscation methods to hinder re-
verse engineering and the search for software vulnerabilities.
However, recent trends in automated bug finding changed the
modus operandi. Nowadays it is very common for bugs to
be found by various fuzzing tools. Due to ever-increasing
amounts of automation and research on better fuzzing strate-
gies, large-scale, dragnet-style fuzzing of many hundreds of
targets becomes viable. As we show, current obfuscation tech-
niques are aimed at increasing the cost of human understand-
ing and do little to slow down fuzzing.

In this paper, we introduce several techniques to protect
a binary executable against an analysis with automated bug
finding approaches that are based on fuzzing, symbolic/con-
colic execution, and taint-assisted fuzzing (commonly known
as hybrid fuzzing). More specifically, we perform a system-
atic analysis of the fundamental assumptions of bug finding
tools and develop general countermeasures for each assump-
tion. Note that these techniques are not designed to target
specific implementations of fuzzing tools, but address gen-
eral assumptions that bug finding tools necessarily depend on.
Our evaluation demonstrates that these techniques effectively
impede fuzzing audits, while introducing a negligible per-
formance overhead. Just as obfuscation techniques increase
the amount of human labor needed to find a vulnerability,
our techniques render automated fuzzing-based approaches
futile.

1 Introduction

In recent years, fuzzing has proven a highly successful tech-
nique to uncover bugs in software in an automated way. In-
spired by the large number of bugs found by fuzzers such as
AFL [56], research recently focused heavily on improving
the state-of-the-art in fuzzing techniques [10, 11, 22, 44, 54].

Previously, it was paramount to manually remove checksums
and similar roadblocks from the fuzzing targets. Addition-
ally, fuzzers typically required large, exhaustive seed cor-
pora or a precise description of the input format in form of a
grammar. In a push towards a greater degree of automation,
research recently focused on avoiding these common road-
blocks [14, 39, 44, 45, 48, 54]. This push toward automation
greatly simplifies the usage of these tools. One can argue that,
for the attacker, using a fuzzer is as easy as it is for the de-
fender. In fact, recently the Fuzzing Ex Machina (FExM) [49]
project managed to reduce the overhead of running fuzzers to
a degree where they managed to fuzz the top 500 packages
from the Arch Linux User Repository with no manual effort
in seed selection or similar issues. This two day effort yielded
crashes in 29 of the most popular packages of Arch Linux. It
stands to reason that this kind of indiscriminate, dragnet-style
searching for software bugs will become more prevalent in
the future.

While the developers of a software system should typi-
cally thoroughly fuzz test every type of software, in practice
they may want to maintain an asymmetric cost advantage.
More specifically, it should be easier for the maintainers of
a software project to fuzz their own software than for at-
tackers. This can be achieved by adding mechanisms to the
software such that the final binary executable is protected
against fuzzing: the maintainers can then build an internal
version that can be tested thoroughly, while an attacker can
only access the protected binary which prohibits automated
tests. In the past, similar asymmetric advantages in analysis
and bug finding were introduced by obfuscation techniques.
As we demonstrate, even very high levels of obfuscation will
typically result only in a meager slowdown of current fuzzing
techniques. This is due to the fact that obfuscation typically
aims at protecting against program understanding and formal
reasoning. On the other hand, fuzzers typically do not perform
a significant amount of reasoning over the behaviour of the
program. On the downside, these heavy obfuscation mech-
anisms will often incur a significant runtime overhead [19].
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How software can be protected against fuzzing in an efficient
and effective way is an open problem.

In this paper, we tackle this challenge and present several
general methods to impede large scale, automated fuzzing au-
dit of binary executables. We present several techniques that
can be added during the compilation phase of a given software
project such that the resulting binary executable withstands
fuzzing and significantly hampers automated analysis. Our
methods are based on a systematic analysis of 19 current
bug finding tools with respect to their underlying assump-
tions. Note that we use the terms “fuzzer” and “bug finding
tool” interchangeably to describe all kinds of tools that are
analyzing programs to produce crashing inputs as opposed
to static analysis tools and linters. We find that all of them
rely on at least one of the following four basic assumptions:
(i) coverage yields relevant feedback, (ii) crashes can be de-
tected, (iii) many executions per second are achievable, and
(iv) constraints are solvable with symbolic execution. Based
on these insights, we develop fuzzing countermeasures and
implement a lightweight protection scheme in the form of a
configurable, auto-generated single C header file that devel-
opers can add to their application to impede fuzzers. For the
evaluated programs, we had to change on average 29 lines of
code, which took less than ten minutes. With these changes,
attackers now need to spend a significant amount of time
to manually remove these anti-fuzzing mechanisms from a
protected binary executable (typically magnified by common
obfuscation techniques on top), greatly increasing the cost
of finding bugs as an attacker. Defenders, on the other hand,
can still trivially fuzz the unmodified version of their software
with no additional cost. Thus, only unwanted and unknown
attackers are at a disadvantage.

We implemented a prototype of the proposed methods in
a tool called ANTIFUZZ. We demonstrate in several exper-
iments the effectiveness of our approach by showing that
state-of-the-art fuzzers cannot find bugs in binary executables
protected with ANTIFUZZ anymore. Moreover, we find that
our approach introduces no observable, statistically significant
performance overhead in the SPEC benchmark suite.

Contributions In summary, in this paper we make the fol-
lowing contributions:

• We present a survey of techniques employed by current
fuzzers and systematically analyze the basic assumptions
they make. We find that different fuzzing approaches rely
on at least one of the fundamental assumptions which
we identify.

• We demonstrate how small changes to a program nul-
lify the main advantages of fuzzing by systematically
violating the fundamental prerequisites. As a result, it
becomes significantly harder (if not impossible with cur-
rent approaches) to find bugs in a protected program
without manual removal of our anti-fuzzing methods.

• We implemented our anti-fuzzing techniques in a tool
called ANTIFUZZ that adds fuzzing countermeasures
during the compilation phase. Our evaluation with sev-
eral different programs shows that with a negligible per-
formance overhead, ANTIFUZZ hardens a target binary
executable such that none of the tested fuzzers are able
to find any bugs.

To foster research on this topic, we release our implemen-
tation and the data sets used as part of the evaluation at
https://github.com/RUB-SysSec/antifuzz.

2 Technical Background

Fuzzing (formerly known as random testing) has been around
since at least 1981 [20]. In the beginning, fuzzers would
simply try to execute programs with random inputs. While
executing, the fuzzer observes the behavior of the program
under test: if the program crashes, the fuzzer managed to
find a bug and the input is stored for further evaluation. Even
though this technique is surprisingly simple—particularly
when compared to static program analysis techniques—with a
sufficient number of executions per second it has been helpful
at finding bugs in complex, real-world software in the past.

In recent years, the computer security community paid
much more attention to improving the performance and scal-
ability of fuzzing. For example, the OSS-FUZZ project has
been fuzzing many highly-relevant pieces of software 24/7
since 2016 and exposed thousands of bugs [1]. FEXM autom-
atized large parts of the setup and the authors were able to
fuzz the top 500 packages from the Arch Linux User Repos-
itory [49]. To improve the usability of fuzzers in such sce-
narios, the biggest focus of the research community is to
automatically overcome hard-to-fuzz code constructs that pre-
vious methods could not successfully solve with the goal
of reaching deeper parts of the code. Particularly, common
program analysis techniques were applied to the problem
of fuzzing. For example, symbolic execution and its some-
what more scalable derivative concolic execution was used
to overcome hard branches and trigger bugs that are only
trigger-able by rare conditions [25–27, 31, 42, 48, 50, 54].
Other fuzzers use taint tracing to reduce the search space
to mutations that actually influence interesting parts of the
program [14,23,31,42,45]. A complementary line of work fo-
cused on improving the fuzzing process itself without falling
back to (often costly) program analysis techniques. Many
techniques propose improvements to the way AFL instru-
ments the target [2, 22, 29, 47], or how inputs are scheduled
and mutated [10, 11, 13, 46, 52]. Some methods go as far as
removing hard parts from the target [44, 50]. Lastly, the ef-
fectiveness of machine learning models for efficient input
generation was evaluated [9, 28, 32].

Generally speaking, existing methods for fuzzing can be
categorized into the following three different categories based
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on the techniques employed, which we explain in more detail
in the following.

2.1 Blind Fuzzers

The oldest class of fuzzers are so-called blind fuzzers. Such
fuzzers have to overcome the problem that random inputs
will not exercise any interesting code within a given software.
Two approaches were commonly applied: mutational fuzzing
and generational fuzzing.

Mutational fuzzers require a good corpus of inputs to mu-
tate. Generally, mutational fuzzers do not know which code re-
gions depend on the input file and which inputs are necessary
to reach more code regions. Instead, these fuzzers introduce
some random mutations to the file and can only detect if the
program has crashed or not. Mutational fuzzers need seed files
that cover large parts of interesting code as they are unable to
uncover new code effectively. In the past, these fuzzers were
quite successful at uncovering bugs [33]. However, they typi-
cally need to perform a large number of executions per second
to work properly. An example of mutational-only fuzzers are
ZZUF [5] and RADAMSA [33].

The second approach is generational fuzzing: fuzzers which
employ this technique need a formal specification to define
the input format. Based on this specification, the fuzzer is able
to produce many semi-valid inputs. This has the advantage
that the fuzzer does not need to learn how to generate well-
formed input files. However, manual human effort is necessary
to create these definitions (e.g., a grammar that describes
the input format). This task becomes hard for complex or
unknown formats and the specification could still end up
lacking certain features. The additional need for a formal
specification makes this approach much less useful for large-
scale bug hunting with little human interaction. An example
of a generational fuzzer is PEACH [3].

In summary, the only thing a blind fuzzer is able to observe
is whether its input led to a crash of the program or not. There-
fore, these techniques have no indicator of their progress in
exploring the programs state space and thus (especially in the
case of mutational fuzzers), they are mostly limited to simple
bugs even with non-empty and well-formed seed files.

2.2 Coverage-guided Fuzzers

To improve the performance of the mutational fuzzers, Za-
lewski introduced an efficient way to measure coverage-
feedback of an application [56]. This led to a significant
amount of research on coverage-guided fuzzers. These fuzzers
typically use a feedback mechanism to receive information on
how an input has affected the program under test. The key idea
here is that this mechanism gives means by which to judge an
input: Which (new) code regions were visited and how often?
In contrast, a blind fuzzer introduces random mutations to the

input without knowing how those mutations affect the pro-
gram. It effectively relies on pure chance for finding crashing
inputs, while a coverage-guided fuzzer could mutate the same
input file iteratively to increase the code coverage and thus get
closer to new regions where a crash could happen. Examples
of coverage-based fuzzers are AFL [56], HONGGFUZZ [4],
ANGORA [14], T-FUZZ [44], KAFL [47], REDQUEEN [8]
and VUZZER [45]. These fuzzers use multiple ways to obtain
coverage feedback:

Static Instrumentation: One of the fastest methods for
obtaining code coverage is static compile time coverage
(widely used by tools such as AFL, ANGORA, LIBFUZZER,
and HONGGFUZZ). In this case, the compiler adds special
code at the start of each basic block that stores the coverage
information. From a defender’s point of view, this kind of in-
strumentation is not relevant, as we assume that the attackers
do not have access to the source code.

Dynamic Binary Instrumentation (DBI): If only a bi-
nary executable is available, fuzzer typically use dynamic
binary instrumentation (DBI) to obtain coverage information.
This is done by adding the relevant code at runtime. Examples
of this approach are VUZZER and STEELIX [39], which both
use PIN-based [40] instrumentation, and AFL which has mul-
tiple forks using QEMU, PIN, DYNAMORIO, or DYNINST
for DBI. Fuzzers like DRILLER [48] and T-FUZZ use AFL
under the hood and typically rely on the QEMU-based instru-
mentation.

Hardware Supported Tracing: Modern CPUs support
various forms of hardware tracing. For Intel processors, two
technologies can be used: Last Branch Record and Intel-PT.
HONGGFUZZ is able to utilize both techniques, while fuzzers
like KAFL only support Intel-PT.

2.2.1 Using Coverage Information:

Different fuzzers tend to use the coverage feedback obtained
in different ways. To illustrate these differences, we select
two well-known coverage-guided fuzzers; namely AFL and
VUZZER. We then describe how these fuzzers are using cover-
age information internally. It is worth noting that by choosing
AFL, we are basically covering the way various other fuzzers
such as T-FUZZ, ANGORA, KAFL, STEELIX, DRILLER, LIB-
FUZZER, WINAFL, AFLFAST [11], and COLLAFL [22]
are using coverage information. All of these fuzzers (except
ANGORA) use the same underlying technique for leveraging
coverage information. In contrast to AFL, no other fuzzer
followed the path of VUZZER in coverage information usage.
However, due to the unique usage of coverage information in
VUZZER, we describe it as well.

AFL A key factor behind the success of AFL is an effi-
cient, approximate representation of the code coverage. To
reduce the memory footprint, AFL maps each basic block
transition (edge) to one index in a fixed size array referred
to as the “bitmap”. Upon encountering a basic block transi-

USENIX Association 28th USENIX Security Symposium    1933



1

1

2

4

1

1

1.33

1
0
0
1
1
2
0
1
0
0

(a) Final Bitmap           (b) Control-Flow Graph        (c) Final Fitness: 11.33

Figure 1: Using coverage information in AFL-like fuzzers versus Vuzzer in
the same path of a given Control-Flow Graph (b).

tion, it increments the corresponding value in the bitmap as
illustrated in Figure 1(a). The bitmap is typically limited to
64KiB, so it easily fits inside an L2 cache [55]. Although
limiting the size of the bitmap allows very efficient updates, it
also reduces its precision, since in some cases multiple edges
share the same index in the bitmap. It is possible to increase
the size of the bitmap, but at the cost of a significant decline
in performance [22].

As mentioned earlier, ANGORA uses a very similar scheme
with a slight difference: before updating the bitmap entry, AN-
GORA XORs the edge index with a hash of the call stack. This
way, ANGORA can distinguish the same coverage in different
contexts, while AFL can not. For example, in Listing 1, AFL
cannot distinguish the coverage produced by lines 2 and 3
when called from line 10 from the coverage produced by the
same lines (lines 2 and 3) in the second call. Therefore, AFL
can use feedback to learn that the input should start with “fo”,
however, it cannot use the same information to learn that the
input should continue with “ba”. In contrast, ANGORA can
identify the context (here “fo” and “ba”) of the code and thus
distinguish between these two calls. It is worth to mention
that this drastically increases the number of entries in the
bitmap, and therefore ANGORA might need a bigger bitmap.

Listing 1: A sample code which illustrates the differences between AFL and
ANGORA on distinguishing coverage information

1 boo l cmp ( char *a , char *b ) {
2 i f ( a [0 ]== b [ 0 ] ) {
3 i f ( a [1 ]== b [ 1 ] ) {
4 re turn t r u e ;
5 }
6 }
7 re turn f a l s e ;
8 }
9 . . . .

10 i f ( cmp ( i n p u t , " fo " ) ) {
11 i f ( cmp ( i n p u t +2 , " ba " ) ) {
12 . . . .
13 }
14 }

Vuzzer AFL does not discriminate among edges. There-
fore, an input that covers one previously unseen edge is just
as interesting as an input which covers hundreds of unseen
edges. This is the fundamental difference between VUZZER

and AFL. Unlike AFL, VUZZER extracts the exact basic
block coverage (instead of the bitmap) and enriches the feed-
back mechanism with additional data. For example, VUZZER
uses a static disassembly to weight basic blocks according to
how “deep” they are within a function (e.g., how many condi-
tions have to be satisfied to reach this block). Higher scores
are assigned to harder-to-reach blocks. To further improve the
feedback mechanism, VUZZER excludes basic blocks that
belong to error paths by measuring the coverage produced
by random inputs. In the example shown in Figure 1(c), each
basic block has a weight. As can be seen, basic block H has a
much higher weight than basic block G because H is much less
likely to be reached by a random walk across the control-flow
graph (with back-edges removed). Finally, all the weights of
all basic blocks in the path are added up to calculate a fitness
value. VUZZER then uses an evolutionary algorithm to pro-
duce new mutations: inputs with a high fitness value produce
more offspring. These newly created offspring are then used
as the next generation.

2.3 Hybrid Fuzzers

While using coverage-based fuzzing already leads to interest-
ing results on its own, there are code regions in a program
which are hard to reach. This typically happens if only a very
small percentage of the inputs satisfy some conditions. For
example, a specific four-byte magic value that is checked
by the program under the test makes it nearly impossible
for coverage-based fuzzers to pass the check and therefore
reach deeper code regions. To address this problem, various
research suggest using a combination of program analysis
techniques to assist the fuzzing process [44, 48, 54]. By using
symbolic execution or taint analysis, a fuzzer is able to reason
what inputs are necessary to cover new edges and basic blocks.
Instead of only relying on random mutations and selection
by information gathered through feedback mechanisms, these
tools try to calculate and extract the correct input necessary
for new code coverage. Examples of fuzzers which are using
symbolic or concolic execution to assist the coverage-based
fuzzer are DRILLER [48], QSYM [54], and T-FUZZ [44].

The archetypal hybrid fuzzer is DRILLER, which uses con-
colic execution to search for inputs that produce new coverage.
It tries to provide a comprehensive analysis of the program’s
behaviour. In contrast, QSYM [54] identified this behavior
as a weakness since the fuzzer can validate that the input
proposed by the symbolic or concolic execution generates
new coverage very cheaply. Therefore, an unsound symbolic
or concolic execution engine can produce a large number
of false positive proposals, without reducing the overall per-
formance of the fuzzer. Building upon this insight, QSYM
discards all but the last constraint in the concrete execution
trace as well as the symbolic values produced by basic blocks
that were executed frequently. Finally, it is worth mentioning
that in the case of T-FUZZ, symbolic execution is not used for
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the fuzzing process itself. Instead, T-FUZZ patches hard con-
straints. Once T-FUZZ finds a crashing input for the patched
program, it uses symbolic execution to calculate an input that
actually crashes the unpatched target program.

3 Analysis of Fuzzing Assumptions

Based on the categories described in the previous section,
we now analyze and identify fundamental assumptions that
fuzzers use to find bugs. The first insight is that while many
aspects of fuzzing have changed since 1981, two basic as-
sumptions which were originally made still apply to most
modern fuzzers: these two basic original assumptions are
crash detection and high execution throughput. However, to
achieve better performance in modern fuzzers, additional as-
sumptions were made in the past years, as we discuss next.

To evade not only current but also future bug finding meth-
ods, we analyze under which core assumptions all (or at least
most) of the current tools operate. By systematically breaking
assumptions shared by most fuzzers, we can develop a more
universal defense against automated audits. Using this system-
atic approach, we avoid targeting specific implementations
and therefore will hamper all future fuzzing methods built
upon the same general assumptions. We divide the current
fuzzing assumptions into the following four groups:

(A) Coverage Yields Relevant Feedback Coverage-
guided fuzzers typically assume that novel code coverage
also strongly correlates with novel behavior. Therefore, ev-
ery time a modern coverage-guided fuzzer generates an input
which traverses through a new code region, it assumes that the
program behaves differently from previous inputs. Based on
the coverage, the fuzzer decides how much time to allocate for
generating further mutations of this input. For example, most
current fuzzers such as AFL, VUZZER, DRILLER, QSYM,
KAFL, ANGORA, T-FUZZ, and LIBFUZZER use this assump-
tion for coverage-guided fuzzing.

(B) Crashes Can Be Detected Triggering security-
relevant bugs will typically lead to a program crash. Thus,
most bug finding tools need the ability to tell a crashing input
apart from a non-crashing input in an efficient and scalable
way. As a result, they require some techniques to detect if an
application has crashed. Nearly all random testing tools share
this assumption since 1981 [20]. In addition to the coverage-
guided fuzzers, this assumption is also shared by blind fuzzers
such as PEACH, RADAMSA, and ZZUF.

(C) Many Executions per Second To efficiently generate
input files with great coverage, the number of executions per
second needs to be as high as possible. In our experience,
depending on the application and fuzzer, a range from few
hundreds up to a few thousands of executions per second are
typical. Slow executions will drastically degrade the perfor-
mance. All fuzzers mentioned in the previous assumptions

also fall into this class. Only pure symbolic execution tools
such as KLEE do not fall into this category.

(D) Constraints Are Solvable with Symbolic Execution
Hybrid fuzzers or tools based on symbolic execution such
as DRILLER, KLEE, QSYM, and T-FUZZ need to be able
to represent the program’s behavior symbolically and solve
the resulting formulas. Therefore, any symbolic or concolic
execution-based tools only operate well when the semantics of
the program under test are simple enough. This means that the
internal representation of the state of the symbolic/concolic
execution engine has to be small enough to store and the
resulting constraints set has to be solvable by current solvers
to avoid problems related to state explosion.

Summary We compiled a list of 19 different bug finding
tools and systematically check which assumptions they rely
on. An overview of the analyzed tools and their corresponding
assumptions is shown in Table 1. It is worth mentioning that
various tools in this table are based on AFL and thus share
the same assumptions.

4 Impeding Fuzzing Audits

Based on the analysis results of the previous section, we now
introduce techniques to break the identified assumptions of
bug finding tools in a systematic and generic way. Moreover,
we sketch how these techniques can be implemented; actual
implementation details are provided in the next section.

Attacker Model Throughout this paper, we use the fol-
lowing attacker model. First, we assume that an attacker can
only access the final protected binary executable and not the
original source code of the software. She wants to find bugs
in an automated way in the protected binary executable, while
requiring only a minimum human intervention. Commonly
there is the notion that source-based fuzzers significantly out-
perform binary-only fuzzers. Therefore, it is believed that
defenders already have a significant cost advantage over at-
tackers. However, recent advances in fuzzing have shown
that this advantage is in decline. For example, recent binary-
only fuzzing techniques paired with hardware acceleration
technologies such as Intel PT have drastically reduced the
performance gap between binary and source fuzzing. For ex-
ample, Cisco Talos states that the overhead is only 5% to
15% [36] and similar numbers are reported for published Intel
PT-based fuzzers such as KAFL [47]. Additionally, smart
fuzzing techniques outperform source-based fuzzing even in
binary-only targets [8, 54].

Although many relevant software projects are open source,
a large part of all commercial software used in practice is
not available in source code format (e.g., Windows, iOS and
the vast majority of the embedded space). Nonetheless, some
large software projects such as certain PDF viewer and hy-
pervisors are not only well-tested by their developers, but
also by whitehat attackers. This additional attention is an
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Table 1: Bug finding tools and the assumptions they rely on.

(A) Coverage Feedback (B) Detectable Crashes (C) Application Speed (D) Solvable Constraints

AFL 7

KAFL 7

AFLFAST 7

COLLAFL 7

AFLGO 7

WINAFL 7

STEELIX 7

REDQUEEN 7

HONGGFUZZ 7

VUZZER 7

DRILLER

KLEE 7 7 7

ZZUF 7 7

PEACH 7 7

QSYM

T-FUZZ

ANGORA 7

RADAMSA 7 7

LIBFUZZER 7

important factor in their security model. Similarly, projects
that have a history of helpful interactions with independent
researchers should consider not to use ANTIFUZZ, to avoid
scaring researchers away. As an alternative, projects with such
a successful history of community integration can choose to
release unprotected binaries to a set of trusted security re-
searchers. On the other hand, the vast majority of software
gets far less to no attention. These less well-known pieces of
software are still used by many users and they might profit sig-
nificantly from raising the bar against fuzzing (e.g., industrial
controllers such as PLCs [6, 37] or other types of proprietary
software).

Furthermore, in this paper, we consider the case that the
attacker can use any state-of-the-art bug finding tool. How-
ever, we assume that she spends no time on manually reverse
engineering the binary or building custom tooling. We are
aware that in a more realistic scenario, the target application
might be attacked by a human analyst. However, we assume
that ANTIFUZZ is combined with other techniques that were
developed to incur significant cost for human analyst during
reverse engineering [16, 17, 21, 24, 41, 43, 53]. Therefore, to
ensure that different concerns (defending against fuzzing and
defending against analysis by a human) are separated, we
explicitly exclude human analysts from our attacker model.

4.1 Attacking Coverage-guidance
As mentioned previously, the core assumption of coverage-
guided fuzzers is that new coverage indicates new behavior in
the program. To undermine this assumption, we modify the
program which we want to defend against fuzzing by adding
irrelevant code in such a way that its coverage information
drowns out the actual signal. More specifically, by adding
irrelevant code regions (which we call fake code), we deliber-

ately disturb the code coverage tracking mechanisms within
fuzzers. Thereby, we weaken the fuzzer’s ability to use the
feedback mechanism in any useful way and thus remove their
advantage over blind fuzzers.

To introduce noise into the coverage information, we use
two different techniques. The first technique aims at produc-
ing different “interesting” coverage for nearly all inputs. The
rationale behind this is that according to the coverage-guide
assumption, any new coverage means that the fuzzer found
an input that causes new behavior. Therefore, if the program
always displays new coverage (due to our fake code), the
fuzzer cannot distinguish between legitimate new coverage
and invalid fake coverage. As every single input seems to
trigger new behavior, the fuzzer assumes that every input is
interesting. Therefore, it spends a significant amount of time
on generating mutations based on invalid input.

To implement this technique, we calculate the hash of the
program input and based on this hash, we pick a small random
subset of fake functions to call. Each fake function recursively
calls the next fake function from a table of function pointers,
in such a way that we introduce a large number of new edges
in the protected program.

Since even a single bit flip in the input causes the hash to
be completely different, nearly any input that the fuzzer gener-
ates displays new behavior. Fuzzers that are objective-driven
and thus assign weights to more interesting code construct
might find it easy to distinguish between this simple fake
code and the actual application code. Since we cannot assume
that future fuzzers will treat new coverage information in
the same way as current fuzzers do, we introduce a second
technique that aims at providing plausible-looking, semi-hard
constraints. The second technique is designed to add fake
code that looks like it belongs to the legitimate input handling
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code of the original application. At the same time, this code
should include a significant number of easy constraints as
well as some very hard constraints. These hard constraints
can draw the attention of different solving strategies, while
the easy constraints allow us to add noise to the true cover-
age information. We create this fake code by creating random
trees of nested conditions with conditions on the input ranging
from simple to complicated.

Evasion Overall, the attack on the code-coverage assump-
tion consists of a combination of these two techniques to fool
the fuzzer into believing that most inputs lead to new code
coverage and thus they are classified as “interesting”. This
fills up the attention mechanism of the fuzzer (e.g., AFL’s
bitmap or a queue) with random information which breaks
the assumption that the feedback mechanism is helpful in
determining which inputs will lead to interesting code.

4.2 Preventing Crash Detection

After applying our previous method, coverage-guided fuzzers
are “blinded” and have few advantages left in comparison to
blind fuzzers. To further reduce the ability of both coverage-
guided and blind fuzzers to find bugs, we introduced two
additional techniques that attack assumption B identified ear-
lier.

There are multiple ways for a fuzzer to detect if a crash has
happened. The three most common ways are (i) observing the
exit status, (ii) catching the crashing signal by overwriting the
signal handler, and (iii) using the operating system (OS) level
debugging interfaces such as ptrace. To harden our protected
program against fuzzers, we try to block these approaches
by common anti-debugging measures as well as a custom
signal handler that exits the application gracefully. After we
install our custom signal handler, we intentionally trigger a
segfault (fake crash) that our own signal handler recognizes
and ignores. This way, if an outside entity is observing crashes
that we try to mask, it will always observe a crash for each and
every input. It is worth mentioning that by design, the fake
crash is triggered at every program execution independent
from the user input. Thus we do not introduce crashes based
on user inputs.

Evasion We try to catch all crashes before they are re-
ported to an outside entity. If the current application is under
observation or analysis (i.e., where catching crashes is not
allowed), the application is terminated. Typically, if it was
deemed necessary to apply ANTIFUZZ to any application,
there is likely no scenario where it would also be necessary
to continue operating under the given conditions.

In all of these cases, no crashes will be detected even if
they still occur, which breaks the assumption that a crashing
input is detectable as such.

4.3 Delaying Execution

We found that fuzzing tools need many executions per second
to operate efficiently. Our third countermeasure attacks this
assumption, without reducing the overall performance of the
protected program, as follows: we check whether the input
is a well-formed input; if and only if we detect a malformed
input, we enforce an artificial slowdown of the application.
For most applications, this would not induce any slowdowns
in real-world scenarios, where input files are typically well-
formed. But at the same time, it would significantly reduce
the execution speed for fuzzers, where most of the inputs will
be incorrect. We believe that even if malformed input files
occasionally happen in real scenarios, a slowdown of e.g.,
250ms per invalid input is barely noticeable to the end user in
most cases. In contrast, even such a small delay has drastic
effects on fuzzing. Thus, only fuzzers are negatively affected
by this technique.

Delaying the execution can happen through different means,
the easiest way to cause a delay is using the sleep() function.
However, to harden this technique against automated code
analysis and patching tools, one can add a computationally-
heavy task (e.g., encryption, hash calculation, or even crypto-
currency mining) to the protected program such that the re-
sulting solution is necessary to continue the execution.

Evasion Most applications expect some kind of structure
for their input files and have the ability to tell if the input
adheres to this structure. Therefore, ANTIFUZZ does not need
to rely on any formal specification; instead, our responses
are triggered by existing error paths within the program. For
the prototype implementation, we do not propose to detect
error paths automatically, but instead insert them manually
as a developer. If the input is malformed, we artificially slow
down the execution speed of the program. This breaks the
assumption that the application can be executed hundreds
or thousands of times per second, thus severely limiting the
chances of efficiently finding new code coverage.

4.4 Overloading Symbolic Execution Engines

To prevent program analysis techniques from extracting infor-
mation to solve constraints and cover more code, we introduce
two techniques. Both techniques are based on the idea that
simple tasks can be rewritten in a way that it is a lot harder to
reason about their behavior [51]. For example, we can replace
an addition operation using an additive homomorphic encryp-
tion scheme. In the following, we introduce two practical
techniques to achieve this goal.

First, we use hash comparisons. The idea is to replace all
comparisons of input data to constants (e.g., magic bytes)
with a comparison of their respective strong cryptographic
hash values. While still practically equivalent (unless small
collisions for current hashes are found), the resulting compu-
tation is significantly more complex. The resulting symbolic
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expressions grow significantly, and the solvers fail to find a
satisfying assignment for these equations; they become use-
less for finding correct inputs. However this technique has
one weakness: If a seed file is provided that contains the cor-
rect value, a concolic execution engine might still be able to
continue solving other branches.

As a second technique, we can encrypt and then decrypted
the input with a block cipher. We later describe this technique
in detail in Section 5.4.

Evasion By sending the input data through a strong block
cipher and replacing direct comparisons of input data to magic
bytes by hash operations, symbolic, concolic, and taint-based
execution engines are significantly slowed down and ham-
pered in their abilities to construct valid inputs. This breaks
the assumption that constraints in the application are solv-
able. Even though the encryption/decryption combination
is an identity transformation, it is very hard to prove auto-
matically that the resulting output byte only depends on the
corresponding input byte. Therefore, symbolic/concolic ex-
ecution engines either carry very large expressions for each
input byte, or they concretize every input byte, completely
voiding the advantage they provide. Finally, common taint
tracking engines will not be able to infer taint on the input, as
the encryption thoroughly mixes the input bits.

5 Implementation Details

In this section, we provide an overview of the proof-of-
concept implementation of our techniques in a tool called
ANTIFUZZ. As explained above, the use case for ANTIFUZZ
is a developer who has access to source code and wants to
protect his application from attackers who use automatic bug
finding tools to find bugs cost-effectively. Hence, an impor-
tant objective was to keep the required modifications to the
project at a minimum, so that ANTIFUZZ is easy to apply. The
implementation consists of a Python script that automatically
generates a single C header file that needs to be included in
the target program. Furthermore, small changes need to be
performed to instrumt a given application. For our experi-
ments, we analyzed the time it took us to apply ANTIFUZZ
to LAVA-M (which consists of the four programs base64,
md5sum, uniq, and who). As we were already familiar with
the code base of these tools, we could more closely resemble
a developer who has a good understanding of the structure of
the code. It took us four to ten minutes to apply ANTIFUZZ to
each application. The number of lines that needed to be added
or changed depends on the number of constant comparisons
that need to be replaced by hash comparisons. base64 was
an outlier with 79 changed lines, 64 of which were necessary
due to a check against every possible character in the base64
alphabet. The three remaining applications required 6 (uniq),
7 (who), and 23 (md5sum) changed lines, respectively.

In the following, we describe technical details of how AN-
TIFUZZ is implemented.

5.1 Attacking Coverage-guidance
To prevent coverage-guided fuzzing, it is necessary to gen-
erate random constraints, edges, and constant comparisons,
as detailed in Section 4.1. The core idea here is to use every
byte of the input file in a way that could lead to a new basic
block, e.g., by making it depend on some constraints or by
comparing it to randomly generated constants. Depending
on the configurable number of constraints and the size of the
input file, every byte could be part of multiple constraints and
constant comparisons.

Implementation-wise, although it is possible to generate
code for ANTIFUZZ dynamically at runtime, this might cause
problems for fuzzers relying on static code instrumentation
(i.e., they might not be able to “see" code introduced by ANTI-
FUZZ). Thus, our template engine, implemented in 300 lines
of Python code, generates a C file containing all randomly
chosen constraints and constants, and further provides the
ability to set configuration values (e.g., number of fake basic
blocks).

The random edge generation is implemented through a
shuffled array (where the input file seeds the randomness)
consisting of functions that call each other based on their
position in the array (up to a certain configurable depth).

ANTIFUZZ provides a function called antifuzz_init()
that needs to be called with the input filename, ideally before
the file is being processed by the application. This change
needs to be done manually by the developer when he wants
to protect his software against fuzzing: the developer needs to
add one line that calls this function. The function implements
all the techniques against coverage-guided fuzzers mentioned
earlier and sets up signal handlers to prevent crash detection,
as detailed in the next section.

5.2 Preventing Crash Detection
When antifuzz_init() is called, ANTIFUZZ has to confirm
that no crashes can be observed. As detailed in Section 4.2, it
is necessary to overwrite the crash signal handlers, as well as
prevent it from being observed with ptrace.

In the former case, ANTIFUZZ first checks whether over-
writing signals is possible: we register a custom signal handler
and deliberately crash the application. If the custom signal
handler was called, it ignores the crash and resumes execution.
If the application does not survive the crash, it means that
overwriting signals is not possible and, for our purposes, the
resulting crash is a desirable side-effect. If the application
survives the crash, evidently, signal overwriting is possible.

ANTIFUZZ then installs custom signal handlers for all com-
mon crash signals and overwrites these with either a timeout
or a graceful exit (depending on the configuration). This will
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keep some fuzzers from covering any code because they do
not survive the artificial crash at the beginning of the appli-
cation. This behavior could also be replaced by an exit or by
calling additional functions that lead to fake code coverage to
keep up a facade of a working fuzzer.

In the case of ptrace, we use a well-known anti-debugging
technique [34] to detect if we are being observed by ptrace:
we check whether we can ptrace our own process. If we can
ptrace our own process, it means that no other process is
ptraceing it. However, if we are unable to ptrace our own
process, it implies that another process is ptraceing it and
therefore ANTIFUZZ terminates the application.

5.3 Delaying Execution
As detailed in Section 4.3, ANTIFUZZ needs to know when an
input is malformed to slow down the application and hamper
the performance of fuzzers. The main idea, implementation-
wise, is to allow the developer to inform ANTIFUZZ whenever
an input is malformed. Most applications already have some
kind of error handling for malformed input, which either dis-
cards the input or terminates the application. Within this error
handling function of the to-be-protected program, the devel-
oper needs to add a single call to antifuzz_onerror().

Upon invocation of antifuzz_onerror(), ANTIFUZZ de-
lays the execution for a configurable amount of time using
either of the mechanisms mentioned in Section 4.3.

5.4 Overloading Symbolic Execution Engines
There are two main parts to our countermeasures against sym-
bolic/concolic execution and taint analysis engines: replacing
constant comparisons with comparisons of their respective
cryptographic hashes, and putting the input through a crypto-
graphic block cipher before usage.

The first part is implemented via the SHA-512 hash func-
tion. The developer needs to replace important (i.e., input-
based) comparisons with the hash functions provided by AN-
TIFUZZ. Due to the nature of cryptographic hashes, two hash
values can only be checked for equality, and not whether one
is larger or smaller than the other.

To encrypt and decrypt the input buffer, we use the AES-
256 encryption function in ECB mode. The key is gener-
ated from a hash of the input at runtime. We provide a func-
tion that provides the encryption-decryption routine. We can
use this function on any kind of input stream. We provide
antifuzz_fread() as a convenience to make it easier to in-
tegrate the common cases. Any call to fread() needs to be
replaced with its ANTIFUZZ-equivalent call.

Figure 2 illustrates the implementation of all described
techniques using ANTIFUZZ in a simple program. Figure 2.a
shows an unprotected application which is checking an input
value. If the input is valid, it might lead to a program crash
caused by a bug. Otherwise, the program will print some error

and exit. Figure 2.b illustrates the same program which is
now protected by ANTIFUZZ. Additional layers of fake edges
and constraints are specifically targeting coverage-guided
fuzzers. Further down the control-flow graph of the protected
application, ANTIFUZZ added its input encryption/decryption
routine. Next in the Figure 2.b, ANTIFUZZ installs its custom
signal handler and then causes an intentional segmentation
fault (fake crash). However, since ANTIFUZZ installed a cus-
tom signal handler, it receives the signal and checks whether
it is the fake crash or not. If it is legitimate, it delays the ex-
ecution and then exits gracefully. This step basically is the
anti-crash detection implementation of ANTIFUZZ, which
works together with an execution delay mechanism. Finally,
in Figure 2.b, we harden the comparison against 1337 with a
comparison of hashed values.

6 Evaluation

Our evaluation aims to answer the following five research
questions (RQs):

• RQ 1. Are current obfuscation techniques efficient
against automated bug-finding via fuzzing?

• RQ 2. Are the techniques we designed effective at dis-
rupting the targeted fuzzing assumptions?

• RQ 3. Are the techniques effective at preventing fuzzers
from finding bugs?

• RQ 4. Are the techniques effective at reducing the
amount of code that is being tested?

• RQ 5. Do our techniques introduce any significant per-
formance overhead?

To answer the first research question RQ 1., we demon-
strate that modifying a custom dummy application (which
is illustrated in Listing 2) using the state-of-the-art obfusca-
tion tool TIGRESS [15] does not yield a satisfying level of
protection against current fuzzers.

Following the answer to RQ 1., we test all our techniques
individually on multiple fuzzers to demonstrate that they are
effective if and only if the fuzzer employs the targeted as-
sumptions. From this experiment, we can answer RQ 2. and
conclude that our mitigations are working as intended. We use
the same dummy application used in RQ 1. to evaluate eight
fuzzers and bug-finding tools, namely: AFL 2.52b, VUZZER,
HONGGFUZZ 1.6, DRILLER commit 66a3428, ZZUF 0.15,
PEACH 3.1.124, and QSYM commit d4bf407. Besides the
aforementioned fuzzers, we consider one purely symbolic
execution based tool to complete the set of automatic bug
finding techniques: KLEE 1.4.0.0 [12].

To answer RQ 3., we test a subset of these fuzzers against
the LAVA-M dataset to demonstrate that ANTIFUZZ is able
to prevent bug finding in real-world applications.
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Figure 2: A simple program before (a) and after integration (b) with ANTIFUZZ.

To address RQ 4., we evaluate ANTIFUZZ on binary exe-
cutables from binutils to show the difference in test coverage
in a protected and unprotected application. This experiment
demonstrates that ANTIFUZZ does not simply hide bugs, but
also drastically reduces the attack surface. It is worth mention-
ing that in all experiments mentioned above, the bug finding
tools were able to find the bugs in a matter of minutes prior
to enforcing ANTIFUZZ protection. After applying our tech-
niques, there were zero bugs found by the tested tools within
a period of 24 hours.

In the last step, we measure the overhead introduced by
ANTIFUZZ using the SPEC CPU2006 benchmarking suite to
answer RQ 5..

Note that, due to the configurable nature of ANTIFUZZ, we
use the following configuration for all experiments:

• Attacking Coverage-guidance: Generates 10,000 fake
functions with constraints, and 10,000 basic blocks for
random edge generation.

• Delaying Execution: The signal handler introduces a
slowdown in case of a crash to timeout the application
(in addition to slowdowns due to malformed inputs). The
duration of the sleep is set to 750ms.

• Preventing Crash Detection: We enabled all tech-
niques mentioned in Section 5.2.

• Overloading Symbolic Execution Engines: Important
comparisons for equivalence were replaced with SHA-
512 hash comparisons and the input data was encrypted
and decrypted via AES-256 in ECB mode.

If the fuzzer supported both binary instrumentation and
compile-time instrumentation, we used the compile-time in-
strumentation. While in reality, a fuzzer would have to use

binary-only instrumentation mechanisms (given our attacker
model), we chose to use compile-time instrumentation as it
achieves better performance and is also more robust. There-
fore, we erred on the side of caution by assuming that an
attacker is more powerful than state-of-the-art tools.

6.1 ANTIFUZZ versus Software Obfuscation

One of the goals of software obfuscation is to prevent se-
curity researchers, who rely on traditional manual reverse
engineering techniques, from finding bugs. In this section,
we demonstrate that obfuscation on its own fails to thwart
automatic bug finding tools.

Intuitively, blind fuzzers without feedback mechanisms are
not hindered by obfuscation at all, because they neither have
nor need any knowledge about the code. Feedback-driven
fuzzers, however, do need access to edges and basic blocks to
obtain coverage information they can use to guide the fuzzing
process. Thus, obfuscating the control flow via common tech-
niques such as control flow flattening or virtual machine based
obfuscation [21] might impact coverage-guided fuzzers.

Experiment To demonstrate that obfuscation techniques
alone do not protect an application from automatic bug finding
tools, we obfuscated a dummy application (see Listing 2) with
TIGRESS 2.2 [15] and let different fuzzers find the correct
crashing input.

Listing 2: Dummy application that crashes if input is ’crsh’

i n t check ( char * i n p u t , i n t s i z e ) {
i f ( s i z e == 4 && i n p u t [ 0 ] == ' c ' && i n p u t [ 1 ] == ' r ' &&

i n p u t [ 2 ] == ' s ' && i n p u t [ 3 ] == ' h ' ) {
c r a s h ( ) ;

}
}
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For this experiment, we use AFL, HONGGFUZZ, KLEE and
ZZUF which are representative of all three fuzzer categories.
Note that VUZZER was excluded because (1) VUZZER is
based on the IDA Pro disassembler, which is thwarted by
obfuscation before the fuzzing process even begins, and (2)
Tigress had trouble compiling non-64bit executables while
VUZZER (at the time of the experiment) was not working on
64-bit binaries. Additionally, any fuzzer which is based on the
aforementioned tools was excluded from the experiment. For
example, QSYM and DRILLER use AFL with an additional
symbolic execution engine. Therefore, if AFL is able to find
the bug, we conclude that other tools that use AFL under the
hood can also find the bug.

We configured TIGRESS by enabling as many of the obfus-
cation features as we could. The exact configuration is shown
in Table 1 of Appendix A.

Result This experiment revealed that all fuzzers could find
the crashing input despite all obfuscation techniques being
enabled. This answers research question RQ 1., current ob-
fuscation techniques are not efficient against automated bug
finding techniques. Even though changing the control-flow
graph might have an impact on the feedback mechanism, the
changes are static or random. In contrast, in ANTIFUZZ the ad-
ditional information for the feedback mechanism is dependant
on the input, which is a major difference between common
obfuscation methods and our approach.

6.2 Finding Crashes in a Simple Dummy Ap-
plication

To answer research question RQ 2., we use the same dummy
application from the previous experiment.

For this evaluation, we enable our anti-fuzzing techniques
one at a time, rather than enabling all of them at once. This
allows us to observe which fuzzer is vulnerable to each tech-
nique we introduced. We use this rather simple target for two
reasons. (1) If a fuzzer is unable to find this very shallow bug,
they will most likely also fail to find more complex crashes,
and (2) the code is simple enough to be adjusted to different
systems and fuzzers (e.g., DRILLER needs CGC binaries).

Any input that is not the crashing input is deemed to be
malformed, i.e., ANTIFUZZ decides to slow down the applica-
tion in that case. If countermeasures against program analysis
techniques are activated, the data from the input file is first
encrypted and then decrypted again. The comparisons against
the individual bytes of “crsh” are done via hash comparisons
(e.g., hash("c") == hash(input[0])). Signal tampering
and anti-coverage techniques are all applied before the input
file is opened. Since both PEACH and ZZUF are not able to
overcome the four-byte constraints on their own, we provided
ZZUF with the seed file where only the “c” character was
missing. Similarly, PEACH was evaluated on an ELF64 parser

Table 2: Evaluation against the dummy application. means ANTIFUZZ
was successful in preventing bug finding (no crash was found) and 7means
that at least one crashing input was found. None means ANTIFUZZ was
disabled, All means that all techniques against fuzzers (Coverage, Crash,
Speed and Symbolic Execution) were turned on.

None Coverage Crash Speed Symbolic Exec. All
AFL 7 7
Honggfuzz 7 7
Vuzzer 7
Driller 7 - - 7
Klee 7 a

zzuff 7 7 7 7
Peach 7 7 7
QSYM 7 7

a Klee ran at least 24h and then crashed due to memory constraints.

(readelf). We modified the elf parser to include an additional
one-byte check of a field in ELF64 that guards the crash.

Every possible combination of fuzzer and ANTIFUZZ con-
figuration ran for a period of 24 hours. Moreover, in this ex-
periment, the configuration with all fuzzing countermeasures
enabled (“All”) ran for a total of 100 hours.

Result The results of this experiment are shown in Table 2.
Without ANTIFUZZ, it only took a couple of seconds up to
a few minutes for all eight fuzzers to find the crashing input.
However, when ANTIFUZZ was fully activated, no fuzzer
was able to do so even after 100 hours. Comparing this ta-
ble to Table 1 shows that our techniques clearly address the
fundamental assumptions that fuzzers use to find bugs.

All coverage-guided fuzzers were impeded by our anti-
coverage feature. As expected, all fuzzers were unable to find
crashes when we used our anti-crash detection technique. It
is worth mentioning that DRILLER was not tested with this
configuration because the CGC environment does not allow
custom signal handlers. Surprisingly, KLEE was also unable
to find the crash because of its incomplete handling of custom
signals. Since delaying execution technique (speed) also relies
on custom signals, the experiment with DRILLER was omitted
and KLEE failed to find the bug. ZZUF was able to crash the
target because there were only 256 different inputs to try.

As expected, KLEE was not able to find the correct input
once countermeasures against symbolic execution were acti-
vated. Surprisingly, VUZZER is confused by this technique
as well. A closer inspection suggests that this behavior was
due to the fact that this technique is also highly effective at
obfuscating taint information.

6.3 Finding Crashes in LAVA-M

The dummy application demonstrated our ability to thwart
fuzzers for simple examples. To make sure that our tech-
niques also hold up on more complex applications (and an-
swer RQ 3.), we evaluate ANTIFUZZ with the LAVA-M
dataset [18], which consists of four applications (base64,
who, uniq and md5sum) where several bugs were artificially
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Table 3: Statistical analysis of the code coverage on eight binaries from binutils. The effect size is given in percentage of the branches that could be covered after
enabling ANTIFUZZ as compared to the coverage achieved on an unprotected program. Experiments where the two-tailed Mann-Whitney U test resulted in
p < 0.05 are displayed in bold.

addr2line ar nm-new objdump readelf size strings strip-new
vuzzer 12.12%, p: 0.04 - 1.81%, p: 0.04 2.65%, p: 0.03 1.10%, p: 0.04 13.41%, p: 0.33 6.25%, p: 0.04 0.84%, p: 0.19
afl 9.49%, p: 0.04 - 1.92%, p: 0.04 4.98%, p: 0.04 0.70%, p: 0.04 6.30%, p: 0.04 16.17%, p: 0.04 4.52%, p: 0.04
hongg 0.00%, p: 0.03 0.00%, p: 0.25 0.00%, p: 0.03 0.00%, p: 0.03 0.00%, p: 0.03 0.00%, p: 0.03 0.00%, p: 0.03 0.00%, p: 0.03
qsym 7.12%, p: 0.04 11.69%, p: 0.03 5.30%, p: 0.04 5.47%, p: 0.04 1.75%, p: 0.04 9.79%, p: 0.04 8.55%, p: 0.04 4.89%, p: 0.04

Table 4: Evaluation against base64, uniq, who, md5sum from the LAVA-M
data set. means ANTIFUZZ was successful in preventing bug finding (no
crash was found) and 7 means that at least one crashing input was found, the
# sign denotes the number of unique crashes found. None means ANTIFUZZ
was disabled, All means that all techniques against fuzzers (Coverage, Crash,
Speed and Symbolic Execution) are turned on.

None Coverage Crash Speed Symbolic Execution All
base64
AFL 7(#28) 7(#24)
Honggfuzz 7(#48) 7(#48)
QSYM 7(#48)
Vuzzer 7(#47) 7(#33)
zzuf 7(#1) 7(#1) 7(#1)
uniq
AFL 7(#14) 7(#13)
Honggfuzz 7(#29) 7(#29)
QSYM 7(#14)
Vuzzer 7(#26) 7(#15)
zzuf 7(#1) 7(#1) 7(#1)
who
AFL 7(#194) 7(#95)
Honggfuzz 7(#72) 7(#72)
QSYM 7(#1926)
Vuzzer 7(#266) 7(#260)
zzuf 7(#1) 7(#1) 7(#1)
md5sum
AFL - - - - - -
Honggfuzz 7(#57) 7(#55)
QSYM 7(#34)
Vuzzer 7(#25) 7(#22)
zzuf - - - - - -

inserted. All fuzzer configurations were allowed to run for 24
hours each. Due to DWORD comparisons that AFL has diffi-
culty to solve, the AFL modification LAF-INTEL was used,
which breaks comparisons (including string operations) down
to single byte comparisons to allow for more nuanced edge
generation during compilation. For blind fuzzers like ZZUF,
solving four bytes is too hard, thus one constraint was reduced
to a single bit-flip for this fuzzer alone.

Results Table 4 shows our result. The # sign denotes the
number of unique crashes found (according to distinct LAVA-
M fault IDs). Again we can see the same consistent result
for all binaries: once ANTIFUZZ is turned on, it effectively
prevents fuzzers from detecting bugs. The exceptional cases
are similar to the ones we discussed in the previous section.
In summary, these results demonstrate that our anti-fuzzing
features are applicable to real-world binaries to prevent bug
finding.

6.4 Reducing Code Coverage
As a next step, we want to answer RQ 4. by demonstrating that
applying ANTIFUZZ results in far less coverage in coverage-
based fuzzers. More specifically, we evaluated AFL, HONGG-
FUZZ, VUZZER, and QSYM against eight real-world binaries
from the binutils collection (namely addr2line, ar, size,
strings, objdump, readelf, nm-new, strip-new). Every
fuzzer and every application was executed three times for
24 hours in the setting “None” (ANTIFUZZ is disabled) and
then again in the setting “All” (all ANTIFUZZ features are
enabled).

Result The results of this experiment are shown in Figure 3.
For each of the eight binutils programs, we compare the per-
formance of the four tested fuzzers (measured in the number
of branches covered) without and with protection via ANTI-
FUZZ. It is apparent that ANTIFUZZ does indeed severely
hinder fuzzers from extending code coverage. Note that in all
cases, when ANTIFUZZ was activated, even after 24 hours
the fuzzers could only reach coverage that would have been
reached in the first few minutes without ANTIFUZZ.

We performed a statistical analysis on the resulting data, the
results are shown in Table 3. All but three out of thirty experi-
ments were statistically significant with p < 0.05 according
to a two-tailed Mann–Whitney U test. Two of the insignifi-
cant results are from VUZZER, which displayed rather low
coverage scores even without ANTIFUZZ enabled. The other
insignificant result is on ar, a target where most bug finding
tools fail due to a multi-byte comparison. Additionally, we
calculated the reduction of the amount of covered code that
resulted from enabling ANTIFUZZ. Typically (in half of the
experiments), less than 3% of the code that was tested on an
unprotected target could be covered when ANTIFUZZ was
enabled. The 95th percentile of coverage was less than 13% of
the code that the fuzzers found when targeting an unprotected
program. In the worst result, we achieved a reduction to 17%.
Therefore, we conclude that ANTIFUZZ will typically reduce
the test coverage achieved by 90% to 95%.

6.5 Performance Overhead
Lastly, to answer RQ 5. we measure the performance over-
head caused by using ANTIFUZZ on complex programs. For
this purpose, we use the SPEC CPU2006 version 1.1 INT
benchmark. This experiment consists of all benchmarks that
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Figure 3: Evaluation of eight binutils binaries to show the branch coverage difference between unmodified binary ("Disabled") and binary with ANTIFUZZ
("Enabled"). The dashed line at the bottom is the baseline (i.e. the number of branches covered with the seed file).

take an input file (thus only 462.libquantum was excluded).
The remaining benchmarks ran for three iterations each and
were averaged over ten runs with the geometric mean.

Result The impact of ANTIFUZZ for each benchmark was
insignificant enough to bear little to no observable overhead
(see Table 5): most applications show small negative over-
heads (with the outlier being gcc with -3.80%), but the positive
overheads also never reach 1%. The total average overhead is
-0.42%. This is expected because antifuzz_init() is only
called once when the input file is opened. Reading the file to
memory and checking if the input data is well-formed usually
happens only once in the beginning, thus it does not impact
the computationally intensive main part of the benchmarks at
all.

7 Limitations

In the following, we discuss limitations of both our proposed
approach and implementation, and also consider threats to
validity. For our current prototype implementation, a human
analyst can likely remove the protection mechanisms added by
ANTIFUZZ rather easily. However, according to our attacker
model, we regard this threat out of scope in the context of this
paper. Moreover, many other works have detailed techniques
to prevent modification and human analysis using software
obfuscation techniques [16, 17, 21, 24, 41, 43, 53]. For a more
complete protection, we recommend to use a combination of

Table 5: SPEC CPU2006 INT benchmark.

Benchmark Overhead

400.perlbench 0.13%
401.bzip2 0.11%
403.gcc -3.80%
429.mcf -0.36%
445.gobmk 0.89%
456.hmmer 0.32%
458.sjeng 0.43%
464.h264ref -1.53%
471.omnetpp -0.8%
473.astar -1.06%
483.xalancbmk 0.17%

Total average -0.42%

both ANTIFUZZ as well as traditional anti-analysis/-patching
techniques.

The delay-inducing technique should not be applied to any
kind of public-facing server software, as this would drastically
weaken the server against Denial-of-Service attacks. Instead
of sleeping or busy waiting, one should implement a similar
approach based on rate limitation.

The number of functions added as fake code results in a
fixed file size increase of approximately 25MB. While this
is less relevant for large software binaries, it might pose sig-
nificant code size overhead for small binaries. However, for
modern machines we deem this to be a minor obstacle.
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Furthermore, it is worth mentioning that one can avoid
this increase in file size by using self-modifying code. We
explicitly decided not to use self-modifying code since such
techniques have the tendency of making exploitation easier
by using memory pages with read/write/execute privileges
and potentially raising alerts in anti-virus products.

Furthermore, ANTIFUZZ in its current form requires de-
veloper involvement which is not optimal from a usability
perspective. However, most of the manual work in ANTIFUZZ
can be automated. In particular, we require the developer to
perform the following tasks: (a) find error paths, (b) replace
constant comparisons, and (c) annotate functions which read
user input or data. It is relatively easy to automate items (b)
and (c) via a compiler pass. The reason that finding error paths
is more challenging is that there are many different ways for
handling errors. On the other hand, the responsible developer
is well aware of the error handling code. Adding a single
function call in the error handler is straightforward and does
not significantly increase the complexity of the code base.

Additionally, it is worth mentioning that the benchmarking
suite which we used was focused on CPU intensive tasks
rather than I/O bound tasks. We assume that using our pro-
totype AES implementation to encrypt and decrypt every
input significantly increases the overhead on I/O bound tasks.
Therefore, we recommend to replace AES by a much weaker
and faster encryption algorithm, as our goal is not to be cryp-
tographically secure, but to confuse SMT solvers.

Finally, it has to be considered that automatic program
transformations for obfuscation can always be thwarted [7].
Therefore, tools like ANTIFUZZ can never completely guar-
antee that they can defeat a motivated human analyst. Based
on this observation, the situation for anti-fuzzing mechanisms
like ANTIFUZZ is similar to obfuscation mechanisms: given
sufficient interest from the attackers and defenders, a pro-
longed arms race is to be expected. This also means that as
time passes, continuing this arms race will become more and
more expensive for both sides involved. However, similar
to obfuscation, we expect only the implementation of tools
like ANTIFUZZ to become more complicated. Similarly to
modern obfuscation tools, usage of anti-fuzzing defenses will
most likely remain cheap.

As we cannot evaluate against techniques not yet invented,
some of our techniques could be attacked by smarter fuzzers.
The junk code that was inserted could be detected based on
statistical patterns or the way it interacts with the rest of the
execution. To counter this, more complex and individualized
junk code fragments could be used. For example, junk code
can change global variables that are also used in the original
code (e.g., in opaque predicates).

8 Related Work

Obfuscating software against program understanding has been
exhaustively researched. Common techniques include inject-

ing junk code that is never executed [16, 53], often hidden
behind conditional expressions that always evaluate to some
fixed value [17]. The control flow can be further cloaked
by creating many seemingly dissimilar paths that are picked
randomly [43] to thwart dynamic analysis based approaches.
Other common techniques include self-modifying code [41],
which increases the difficulty of obtaining a useful disassem-
bly and changes to the control-flow [21, 24]. Similarly, there
has been some work that specifically target symbolic execu-
tion [51].

Recent research tried to address a very similar issue: To
increase the cost of the attacker, Hu et al. [35] insert a large
number of fake bugs into the target application. This approach
has the advantage that it works against many different kinds
of attack scenarios. However, they rely on the bugs being non-
exploitable as otherwise the actual security of the application
is reduced. For example, the authors state that they rely on
the exact stack layout behavior of the chosen compiler. Any
update to the compiler might render the previously "safe" bugs
exploitable. Additionally, fuzzers generally tend to find many
hundreds to thousands of crashes for each real bug uncovered.
Adding some more crashes does not prevent the fuzzer from
finding real bugs. The large number of crashes found might
draw attention and common analysis techniques for bug triage
(such as AFLs bug exploration mode) will greatly simplify
weeding out the fake bugs.

In contrast, our approach is much more low key. Addition-
ally, since in our approach no proper test coverage is achieved,
no analysis of the produced fuzzing data will be able to un-
cover any bugs. An idea similar to our fake code insertions
was also presented in a talk by Kang et al. [38]. However, they
explicitly tried to prevent AFL in QEMU mode from finding
a specific crashing path. In our scenario, the defenders do
not know the specific crashing path, as otherwise, they would
rather fix the bug. Additionally, as we demonstrated in our
evaluation, our approach is effective across different fuzzers
and does not attack a specific implementation.

Finally, a master thesis by Göransson and Edholm has in-
troduced the idea of masking crashes and actively detecting if
the program is being fuzzed, e.g., by detecting specific AFL
environment variables [30]. Similarly to the work by Kang et
al., the methods they devised are highly specific to the imple-
mentation of the only two fuzzers they considered: AFL and
HONGGFUZZ. Additionally, to reduce the execution speed
of fuzzers, they proposed to artificially decrease the overall
performance of the program under test, whereas ANTIFUZZ
only decreases the performance if the input is malformed.

9 Conclusion

In this paper, we categorized the general assumptions common
to all current bug-finding tools. Based on this analysis, we
developed techniques to systematically attack and break these
assumptions (and thus a representative sample of contempo-
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rary fuzzers). The evaluation demonstrated that obfuscation
on its own fails to prevent fuzzing satisfyingly. In contrast,
our techniques effectively prevent fuzzers from finding crash-
ing inputs in simple programs, even if the crash was found
in seconds in an unprotected application. Furthermore, we
demonstrated that we get the same result for real-world ap-
plications, i.e., fuzzers are unable to detect any crashes or
even achieve a significant amount of new code coverage. Our
techniques also show no significant overhead when evaluated
with the SPEC benchmark suite and can, therefore, be easily
and efficiently integrated into projects with negligible impact
to the performance.

In summary, we conclude that the techniques presented in
this paper are well applicable to deter automated, dragnet-
style hunting for bugs. In combination with common program
obfuscation techniques, they will also hinder a targeted attack,
as manual work is needed to reverse engineer and remove the
anti-fuzzing measures before a more cost-efficient, automated
fuzzing campaign can be started.
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A TIGRESS Configuration

Table 1: Tigress configuration for ANTIFUZZ evaluation. Asterisk means:
"apply to all functions".

Transform Functions
Virtualize check
Flatten *
Split check
InitOpaque main
EncodeLiterals *
EncodeArithmetic *
AddOpaque *
AntiTaintAnalysis *
UpdateOpaque *
Ident *
InitEntropy main
AntiAliasAnalysis *
InitBranchFuns check
RandomFuns *
InitImplicitFlow check
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