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Abstract—The source model for secret key generation with
one way public communication refers to a setting in which
a secret key should be agreed upon at two terminals. At
both terminals correlated components of a common source are
available. Additionally, a message can be sent from one terminal
to the other via a public channel. In this work a related scenario
is considered where instead of secret key generation, the goal is
to securely store data in a public database. The database allows
for error-free storing of the data, but is constrained in its size
which imposes a rate constraint on the storing. The corresponding
capacity for secure storage is known and it has been shown
that the capacity-achieving strategy satisfies the strong secrecy
criterion. Then the case when the storage in the public database is
subject to errors is considered and the corresponding capacity is
characterized. Additionally, the continuity properties of the two
capacity functions are analyzed. These capacity functions are
continuous as opposed to the discontinuous secret key capacity
with rate constraint. It is shown that for secure storage the
phenomenon of super activation can occur. Finally, it is discussed
how the results in this paper differ from previous results on super
activation.

I. INTRODUCTION

Lately, considerable effort has been devoted to deriving

information theoretic results that can be applied in communica-

tion scenarios where low delay is an essential requirement

[1]. For many of these applications, the communication

task should be performed securely due to the presence of

eavesdroppers. Examples for such applications in the context

of the Tactile Internet are discussed in [2]. The authors of [2]

also discuss the infrastructure requirements needed in order to

realize these applications. The Tactile Internet is considered a
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promising forthcoming innovation and motivated considerable

fundamental research. Currently the Tactile Internet is in the

process of standardization and the corresponding results can

contribute fundamentally to the fifth generation mobile network

5G and systems beyond, especially 6G [3]. As discussed in

[2], information theoretic security can contribute significantly

to realize communication systems that combine low latency

and security. For an overview of recent results in information

theoretic security, see for example [4], [5] and [6].

A well known model in information theoretic security is

the source model for secret key (SK) generation with one way

public communication. It was first considered in [7] and [8]. In

this model we consider two legitimate users who should agree

upon a common SK. For this purpose, each of the legitimate

users has access to an output of a discrete memoryless multiple

source (DMMS) with two components. Additionally, a message

can be sent from one legitimate user to the other over a noiseless

public channel. An eavesdropper who can overhear the public

communication should be kept ignorant of the SK.

This model of secret key generation further serves as the

basis for an information theoretic treatment of authentication

when an additional privacy leakage constraint on the source

observations is imposed [4], [9], [10].

In this work we consider a related model which is a source

model for secure data storage. (In [9] and [11] this model

is called the chosen-secret model.) Here we consider two

legitimate users and each of them has access to an output of

a DMMS. The first legitimate user can store a message on a

public database which can be read by the second legitimate

user. There is an eavesdropper, who can also access the public

database. The data that should be stored in the database are

encoded in the message. The eavesdropper is interested in the

data. So the legitimate users use the outputs of the DMMS to

encode and decode the data such that the eavesdropper is kept

ignorant of the data.

In the context of the Tactile Internet a possible application

that can be modeled in such a way is secure storage in so called

Mobile-Edge Clouds. As described in [2] storage in Mobile-

Edge Clouds means that latency critical server requests are

processed by servers that are close to the user. As information

theoretic security enables security in combination with low

delay it makes sense to realize secure storage in Mobile-Edge

Clouds as described in this work. Thus the model for secure

storage can provide insights for the future network topology

of cellular operators [2], [3].

Due to practical limitations, it is reasonable to assume that

the public database is storage constrained which imposes a rate
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constraint on the public message to be stored in the database.

Further, the database is assumed to be perfect in the sense that

the storing itself is error-free. The corresponding capacity of

secure storage has been derived in [11] and it is of interest to

further study the capacity function and its properties in detail.

To this end, we show in this paper that the capacity function

is continuous so that small variations of the system parameters

result in small changes of the capacity only. This shows the

robustness of the capacity function making it a desirable

behavior. Comparing this with the corresponding secret key

generation problem reveals fundamental differences between

both problems. While the capacity of secured storage under rate

constraints is a continuous function, the capacity of secret key

generation under rate constraints is a discontinuous function

[12], [13].

The continuity result is of practical importance as it implies

that the capacity, describing the best possible performance of

protocols for the model under consideration, is not sensitive

to small variations of the model. Continuity of the capacity

function also is a necessary requirement for being computable

on any digital computer (Turing machine).

Our model becomes even more realistic when we consider

storage on hardware that is not perfect, i.e., subject to errors.

Accordingly we generalize the model in the sense that we

replace the perfect public database by an imperfect, i.e.

erroneous, public database. We use a discrete memoryless

channel (DMC) to model the imperfectness. (Similarly, in

[14] a generalized model for SK generation with one way

public communication with a noisy DMC is analyzed.) Using

the results derived for secure storage with a perfect database,

we define protocols for the new model and characterize the

corresponding storage capacity. Then we argue that this capacity

function is continuous too.

Finally we prove that the phenomenon of super activation

[15] can occur in this setting. This means that two parallel pairs

of resources, i.e., two pairs of a source and a DMC, where

each pair of resources has a zero storage capacity, together

can have a storage capacity greater than zero if they are used

jointly.

A related problem has already been considered in 1956

by Shannon. As described for example in [16], Shannon

conjectured in [17] that the zero error capacity is additive,

like the capacity of a DMC with maximum or average error

criterion, see also [18]. This was later disproved by Haemers

[19] and Alon [20]. The zero error capacity is super additive.

This means there are examples where the zero error capacity

of jointly used parallel channels is greater than the sum of the

zero error capacities of the individual channels. The strongest

form of super additivity is the phenomenon of super activation.

The capacity function for secure storage without a rate

constraint on the public message is additive. It is surprising

that introducing a rate constraint on the public communication

can result in the capacity function to become super additive.

This behavior is also interesting in the following sense. To

the best of our knowledge, there are no comparable results (in

classical information theory) known where super activation

occurs for continuous capacity functions. Today the only

examples known in classical information theory where super

activation can occur have a discontinuous capacity function. An

example is the arbitrarily varying wiretap channel [21], [16].

It has been conjectured that the property of super activation

in classical information theory is linked to the discontinuity

of the corresponding capacity function. In this work we show

that this is not the case and super activation can occur for

continuous capacities as well.

Our result also shows that super activation is possible for an

i.i.d. problem in classical information theory. In literature, all

models of classical information theory where super activation

occurs comprise non i.i.d. random vectors (like the arbitrarily

varying wiretap channel).

These results provide insightful approaches to the solution

of problems in system design concerned with medium access

control in communication scenarios where we want to allocate

resources efficiently. This means that our results show how

resources such as the outputs of a DMMS or a public database

should be used in an efficient way. They imply that in some

cases joint processing of the available resources permit large

gains in terms of performance compared to separate processing.

This has far-reaching implications on the system design.

Our contribution is the following. We show that the capacity

function for secure data storage is continuous in the case of a

perfect database. Additionally we characterize the capacity for

secure data storage with an imperfect database. To the best of

our knowledge, this has not been considered for the storage

problem yet; it has been considered for the problem of SK

generation for an even more general setting in [14]. We show

that this capacity function is continuous too. We also provide

the description of an example where super activation occurs

for secure data storage. As an interesting byproduct we discuss

how our results differ to the literature on super activation. So

our work also contributes to the fundamental understanding of

classical and quantum communication.

This work is organized as follows. In Section II we introduce

the models for SK generation and secure storage. We also give

characterizations of the corresponding capacities. We prove that

the capacity function of secure storage is continuous in Section

III. In Section IV we consider the model for secure storage

with an imperfect database. We characterize the corresponding

capacity and also show that this capacity function is continuous.

We give an example of secure storage where super activation

occurs in Section V.

Notation. We use standard notation, comparable to the notation

introduced in [22]. In contrast to [22], for random variables

X and Y we denote the mutual information by I(X;Y ). We

denote the set of all distributions on X by P(X ) and define

the set of all channels from X to Y

P(Y|X ) = {(PY |X(·|x))x∈X : PY |X(·|x) ∈ P(Y) ∀x ∈ X}.

Let P,Q ∈ P(X ). We define the total variation distance

between P and Q such that

‖P −Q‖TV =
∑

x∈X

|P (x)−Q(x)|.

For P ∈ P(X ), Q ∈ P(Y), W ∈ P(Y|X ) and V ∈ P(Ȳ|X̄ )
we define P ⊗Q ∈ P(X ×Y) by (P ⊗Q)(x, y) = P (x)Q(y)
for all (x, y) ∈ X ×Y . For n ∈ N we define P⊗n ∈ P(Xn) by
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First Phase Second Phase

Encoder Decoder

Xn Y n

K K̂

Source

M

Eavesdropper

Fig. 1. Standard SK generation process with one way public communication
as in [7], [8].

P⊗n(xn) =
∏n

i=1 P (xi) for all xn ∈ Xn. We define W⊗V ∈
P(Y × Ȳ|X × X̄ ) by (W ⊗ V )(y, ȳ|x, x̄) = W (y|x)V (ȳ|x̄)
for all (x, x̄, y, ȳ) ∈ X × X̄ × Y × Ȳ .

II. SECRET KEY GENERATION AND SECURE STORAGE

A. Secret Key Generation

At first we consider SK generation with one way public

communication from a source with two components. The

standard scenario for SK generation with one way public

communication considered in [7], [8] is depicted in Figure 1.

The process consists of two phases. In the first phase, the

first legitimate user reads Xn from the source. Then the first

legitimate user generates the SK K and the helper message

M from Xn using an encoder. The first legitimate user then

sends M to the second legitimate user. In the second phase,

the second legitimate user has access to M and reads Y n from

the source. The second legitimate user then uses a decoder

to reconstruct the SK from M and Y n and thus generates K̂.

The eavesdropper interested in K also has access to M .

We now properly define the information theoretic model for

the standard process of SK generation with one way public

communication [7], [8].

Definition 1. Let n ∈ N. The source model consists of the

random variables (RVs) X and Y with PXY ∈ P(X ×Y), an

encoder f : Xn → K×M and a decoder g : Yn ×M → K̂.

Consider the RV XnY n with PXnY n = P⊗n
XY . The RVs K and

M are generated from Xn using f and the RV K̂ is generated

from Y n and M using g. We call (f, g) a SK generation

protocol.

We now discuss properties of intuitively good SK generation

protocols. We want to use the available resources as efficiently

as possible. This means we want to generate the largest

possible SK from the source output. This means we are

interested in the largest possible SK generation rate. The SK

should be reconstructed correctly with high probability. As

the eavesdropper has access to the helper message, we want

the average information required to specify the SK when the

helper message is known to be as large as possible. From

an information theoretic point of view this is equivalent to

requiring that the SK be uniformly distributed and independent

of the helper message. We also want to control the rate of the

helper message, i.e., the size of the helper message per symbol

read from the source.

First Phase Second Phase

Encoder Decoder

Xn Y n

Dn D̂n

Source

M

Eavesdropper

Fig. 2. Standard secure storage process as in [9].

This suggests the following definition of achievability for

the source model.

Definition 2. Let L ≥ 0. We call the rate R ≥ 0 an achievable

SK rate with rate constraint L for the source model if for all

δ > 0 there is an n0 = n0(δ) such that for all n ≥ n0 there is

an SK generation protocol such that

Pr(K = K̂) ≥ 1− δ (1)

H(K) ≥ log |K| − δ (2)

I(M ;K) ≤ δ (3)
1
n
log |K| ≥ R− δ

1
n
log |M| ≤ L+ δ.

We call the supremum of all achievable SK rates with rate

constraint L the SK capacity CSK(PXY , L).

From [22] we know the following characterization of

CSK(PXY , L) for L ≥ 0, PXY ∈ P(X × Y).

Theorem 1 ([22] Theorem 17.21). It holds that

CSK(PXY , L) = max
U

I(U ;Y )

with RVs UXY such that U −X − Y and I(U ;X|Y ) ≤ L.

Remark 1. For the maximization in Theorem 1 it is sufficient

to consider alphabets U with |U| ≤ |X |+ 1. (See for example

[22, Theorem 17.21].)

Remark 2. The results in [13], where the continuity properties

of CSK are examined, are based on the characterization of CSK

and its dependence on PXY and L. In particular in [13] it is

shown that for all |Y| ≥ 2 and |X | ≥ 2 the function CSK that

depends on PXY ∈ P(X ×Y) and L ≥ 0 is discontinuous. We

provide a more detailed discussion on this proof of discontinuity

in Remark 6.

B. Secure Storage

We also consider secure storage using a source with two

components. This scenario is depicted in Figure 2.

The process consists of two phases. In the first phase, the

first legitimate user reads Xn from the source and gets the data

to be stored Dn. Then the first legitimate user generates the

helper message M from Xn and Dn using an encoder. Finally

the first legitimate user stores M in a public database. In the

second phase, the second legitimate user reads M from the

public database and Y n from the source. The second legitimate
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user then uses a decoder to reconstruct Dn from the stored M

and Y n and thus generates D̂n. The eavesdropper interested

in Dn can read M from the public database too.

We now define an information theoretic model for the secure

storage process. It is very similar to the chosen-secret model

in [9], cf. [23].

Definition 3. Let n ∈ N. The storage model consists of the RVs

X , Y and Dn with PXY ∈ P(X ×Y) and PDn
∈ P(Dn), the

encoder φ : Xn×Dn → M and the decoder ψ : Yn×M → D̂n.

Consider the RV XnY n with PXnY n = P⊗n
XY and independent

of Dn. The RV M is generated from Xn and Dn using φ.

The RV D̂n is generated from Y n and M using ψ. We use

the term storage protocol for (φ, ψ). Additionally it holds that

for all δ > 0 there is an n0 = n0(δ) such that for all n ≥ n0

1
n
D(PDn

‖UDn
) < δ, (4)

where UDn
denotes the uniform distribution on Dn.

Remark 3. In the storage model we consider PDn
∈ P(Dn)

such that (4) is satisfied. This is justified because a good

compression protocol ensures the data to be approximately

uniformly distributed, cf. [24].

We now discuss properties of intuitively good storage

protocols. Again we want to use the source output as efficiently

as possible. This means we want to store the largest possible

message using the available source output. So we are interested

in determining the largest possible storage rate. Additionally,

Dn should be reconstructed correctly with high probability.

As the eavesdropper has access to the stored helper message,

we want the average information required to specify Dn to

be as large as possible when the helper message is known.

From an information theoretic point of view this is equivalent

to requiring Dn be independent of the helper message. We

also want to control the rate of the helper message (as for SK

generation protocols).

This suggests the following definition of achievability for

the storage model.

Definition 4. Let L ≥ 0. We call the rate R ≥ 0 an achievable

secure storage rate with rate contraint L for the storage model

if for all δ > 0 there is an n0 = n0(δ) such that for all n ≥ n0

there is a storage protocol such that

Pr(Dn = D̂n) ≥ 1− δ

I(M ;Dn) ≤ δ
1
n
log |Dn| ≥ R− δ

1
n
log |M| ≤ L+ δ.

We call the supremum of all achievable secure storage rates

with rate constraint L the secure storage capacity CS(PXY , L).

From [11] we know the characterization of CS(PXY , L) for

L ≥ 0, PXY ∈ P(X × Y).

Theorem 2 ([11]). It holds that

CS(PXY , L) = max
U

I(U ;Y )

with RVs UXY such that U −X − Y and I(U ;X) ≤ L.

Remark 4. In the remainder of this work CS plays a central

role. Thus we give a proof of Theorem 2 in the Appendix. This

is motivated by the fact that we want to provide more details of

the proof compared to [11] as we refer to the proof in Section

IV when proving the capacity result for secure storage with

an imperfect database.

Comparing Theorem 1 and Theorem 2 we notice that CSK

and CS seem to have a similar structure but we will see that

both functions have different continuity properties. In particular

we have

lim
L→∞

CS(PXY , L) = lim
L→∞

CSK(PXY , L) = I(X;Y ).

We define

CS(PXY ,∞) = lim
L→∞

CS(PXY , L)

and

CSK(PXY ,∞) = lim
L→∞

CSK(PXY , L).

Of course CSK(PXY ,∞) (and equivalently CS(PXY ,∞)) is

continuous as a function of PXY . But this is not true for

CSK(PXY , L) as a function of (PXY , L). In [13] it is shown

that CSK(PXY , L) is discontinuous. However, in Section III we

show that CS(PXY , L) is continuous on P(X ×Y)×R≥0. So

from a practical point of view CS(PXY , L) has the desirable

property of being robust to small variations of the system

parameters, as described before, while CSK(PXY , L) does not

have this property.

Remark 5. For the maximization in Theorem 2 it is sufficient

to consider alphabets U with |U| ≤ |X |+ 1. (See for example

[22].)

III. CONTINUITY OF THE SECURE STORAGE CAPACITY

As mentioned before, continuity of the function that describes

the performance of a system is important in practice. If the

function is continuous, the system performance is not sensitive

to small variations of the system parameters. This is relevant

because the system parameters can only be determined with

a limited precision (for example due to imperfect channel

measurements).

We now want to show that the secure storage capacity CS

is a continuous function. For this purpose we define a distance

and continuity as follows.

Consider the tuples (P1, L1), (P2, L2) ∈ P(X × Y)× R≥0.

We define the distance between these tuples as

d((P1, L1), (P2, L2)) = ‖P1 − P2‖TV + |L1 − L2|.

Definition 5. CS : P(X × Y) × R≥0 → R≥0 is said to be

continuous in (P,L) ∈ P(X ×Y)×R≥0 if for each sequence

(Pn, Ln)n∈N, (Pn, Ln) ∈ P(X ×Y)×R≥0 for all n ∈ N, with

lim
n→∞

d((P,L), (Pn, Ln)) = 0

we have

lim
n→∞

CS(Pn, Ln) = CS(P,L).

Remark 6. In contrast to CS , the SK capacity CSK is

discontinuous. In [12], [13] it is shown that there are sequences
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(Pn)n∈N, Pn ∈ P(X × Y) and (Ln)n∈N, Ln ∈ R≥0 and

P̂ ∈ P(X × Y), L̂ ∈ R≥0 such that

lim
n→∞

d((Pn, Ln), (P̂ , L̂)) = 0

but

lim sup
n→∞

CSK(Pn, Ln) 6= CSK(P̂ , L̂),

i.e. CSK is discontinuous.

In [13] SK generation is related to common randomness

(CR) generation from a correlated source PXY without public

communication. CR generation is very similar to SK generation

inasmuch as in both settings, two legitimate users observe

correlated sequences Xn and Y n respectively. They generate

K = K(Xn) and K̂ = K̂(Y n) from Xn and Y n respectively

using randomized functions. We define achievability for CR

generation similarly to achievability for SK generation without

public communication. The difference to SK generation is

that we omit the secrecy requirement (3) in Definition 2. We

define the CR generation capacity CCR(PXY ) accordingly. It

is clear that CCR(PXY ) ≥ CSK(PXY , 0). (As without public

communication the secrecy requirement is met trivially we

even have CCR(PXY ) = CSK(PXY , 0).)
Now we consider the case |X | = |Y| = 2. (The general case

follows as described in [13].) According to [25] it holds for

n ≥ 2 that CCR(Pn) = 0 (and thus CSK(Pn, 0) = 0) for

Pn(x, y) =

(

1
2 − 1

2n
1
2n

1
2n

1
2 − 1

2n

)

.

Furthermore we have CCR(P∗) = CSK(P∗, 0) = 1 where

P∗(x, y) =

(

1
2 0
0 1

2

)

.

It also holds that

lim
n→∞

‖Pn − P∗‖TV = 0.

This is used in [13] to prove the discontinuity of CSK(P,L)
as a function of (P,L) ∈ P(X × Y)× R≥0.

We now show that this behaviour can not occur for CS , i.e.

CS is indeed continuous.

Theorem 3. CS : P(X × Y)× R≥0 → R≥0 is continuous on

its domain.

Proof: For the proof we show that

{CS(PXY , L)}PXY ∈P(X×Y) is equicontinuous in L and for

all L ∈ R≥0 we show that CS(PXY , L) is continuous in PXY .

Then we combine both results to get the continuity in (PXY , L).
We start with the proof that {CS(PXY , L)}PXY ∈P(X×Y) is

equicontinuous in L.

Let PXY ∈ P(X ×Y) and L1, L2 ≥ 0 with |L1 − L2| ≤ ǫ,

ǫ > 0. We divide the proof in two parts. At first we consider

the case L1 > 0. Then we consider the case L1 = 0.

So first assume L1 ≥ L2 > 0. Consider the RVs U1, U2

such that U1 −X − Y , U2 −X − Y ,

CS(PXY , L1) = I(U1;Y )

CS(PXY , L2) = I(U2;Y )

and

I(U1;X) ≤ L1

I(U2;X) ≤ L2.

It is clear that

I(U1;Y ) ≥ I(U2;Y ). (5)

Consider the RV U0 such that U0 −X − Y and I(U0;X) = 0
(i.e. the RVs U0 and X are independent). Let 1 ≥ λ > 0 and

define the RV Ū with Ū −X − Y and

PŪ |X = λPU1|X + (1− λ)PU0|X .

We have

max
x∈X

‖PU1|X(·|x)− PŪ |X(·|x)‖TV

= max
x∈X

‖PU1|X(·|x)− λPU1|X(·|x)− (1− λ)PU0|X(·|x)‖TV

= (1− λ)max
x∈X

‖PU1|X(·|x)− PU0|X(·|x)‖TV

≤ (1− λ)2 =: θ. (6)

As I(U ;X) is convex in PU |X (for a RV U ) we get

I(Ū ;X) ≤ λI(U1;X) + (1− λ)I(U0;X)

= λI(U1;X). (7)

From (7) we get

I(Ū ;X) ≤ λL1 = L2

for λ = L2

L1

. Thus, for this choice of λ it is clear that Ū is an

element of the feasible set of the optimization problem that

determines CS(PXY , L2). So

I(Ū ;Y ) ≤ I(U2;Y ) ≤ I(U1;Y )

where for the last inequality we use (5). We get from (6)

‖PŪXY − PU1XY ‖TV

=
∑

u,x,y

|PŪXY (u, x, y)− PU1XY (u, x, y)|

≤
∑

x,y

PXY (x, y)max
x∈X

‖PU1|X(·|x)− PŪ |X(·|x)‖TV ≤ θ.

Thus we can also upper bound the variational distance of the

corresponding marginals by θ using the triangle inequality. We

have

I(Ū ;Y ) = H(Y )− (H(ŪY )−H(Ū))

≥ H(Y )−H(U1Y )− θ log |Y||U|
θ

+H(U1)− θ log |U|
θ
,

cf. [22, Lemma 2.7]. (As we use [22, Lemma 2.7] we need

θ ≤ 1
2 which is equivalent to λ ≥ 3

4 . This requirement is met

for ǫ small enough.) So

I(Ū ;Y ) ≥ I(U1;Y )− θ log |Y|(|X |+1)2

θ2 .

Note that the second term does not depend on PXY . So we

now know

CS(PXY , L1)− θ log |Y|(|X |+1)2

θ2

≤ CS(PXY , L2) ≤ CS(PXY , L1)
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which implies

|CS(PXY , L1)− CS(PXY , L2)| ≤ θ log |Y|(|X |+1)2

θ2 .

Equivalently we get for L2 ≥ L1 > 0 that

CS(PXY , L2)− θ log |Y|(|X |+1)2

θ2

≤ CS(PXY , L1) ≤ CS(PXY , L2)

which implies

|CS(PXY , L1)− CS(PXY , L2)| ≤ θ log |Y|(|X |+1)2

θ2 .

So the family {CS(PXY , ·)}PXY ∈P(X×Y) is equicontinuous

on R>0.

For the second part of the proof we consider the case L = 0.

In order to prove equicontinuity for the point L = 0 consider

CS(PXY , ǫ), ǫ > 0. As for a RV U with U −X − Y

I(U ;Y ) ≤ I(U ;X)

we have CS(PXY , ǫ) ≤ ǫ and CS(PXY , 0) = 0 and thus

equicontinuity also for L = 0.

Now we prove that CS(PXY , L) is continuous in PXY .

At first we fix L = 0. As CS(PXY , 0) = 0 for all PXY ∈
P(X × Y) it holds that CS(·, 0) is continuous on P(X × Y).

Now consider L > 0. Let PX1Y1
, PX2Y2

∈ P(X × Y) such

that ‖PX1Y1
− PX2Y2

‖TV ≤ ǫ, ǫ > 0. Consider RVs U1, U2

such that

U1 −X1 − Y1,

U2 −X2 − Y2,

CSK(PX1Y1
, L) = I(U1;Y1),

CSK(PX2Y2
, L) = I(U2;Y2)

and

I(U1;X1) ≤ L, I(U2;X2) ≤ L.

We have
∑

u,x,y

|PU2|X2
(u|x)PX2Y2

(x, y)− PU2|X2
(u|x)PX1Y1

(x, y)|

=
∑

u,x,y

PU2|X2
(u|x)|PX2Y2

(x, y)− PX1Y1
(x, y)|

≤ (
∑

u

max
x

PU2|X2
(u|x))ǫ ≤ |U|ǫ.

Define RVs U3X3Y3 such that

PU3X3Y3
(u, x, y) = PU2|X2

(u|x)PX1Y1
(x, y)

for all (u, x, y) ∈ U × X × Y . We have

I(U3;X3) = H(U3) +H(X3)−H(U3X3)

= H(U3)−H(U3X3) +H(X1)

≤ H(U2) + |U|ǫ log 1
ǫ

−H(U2X2) + |U|ǫ log |X |
ǫ

+H(X2) + ǫ log |X |
ǫ

= I(U2;X2) +
(

|U|ǫ log |X |
ǫ2

+ ǫ log |X |
ǫ

)

.

First Phase Second Phase

Encoder DecoderWm

Zm

Xn Y n

Dn D̂n

Source

V m

Eavesdropper

Fig. 3. Secure storage process with imperfect database.

Here we use [22, Lemma 2.7]. With δ =
(

|U|ǫ log |X |
ǫ2

+

ǫ log |X |
ǫ

)

we thus have

I(U3;X3) ≤ δ + L.

This implies

I(U3;Y3) ≤ CS(PX1Y1
, L+ δ)

≤ CS(PX1Y1
, L) + ξ = I(U1;Y1) + ξ

for a ξ > 0 arbitrarily small for δ small enough (which follows

from the continuity of CS in L). Now consider

I(U3;Y3) = H(U3) +H(Y3)−H(U3Y3)

≥ I(U2;Y2)−
(

|U|ǫ log |Y|
ǫ2

+ ǫ log |Y|
ǫ

)

which follows again from [22, Lemma 2.7] and we define

ξ̄ =
(

|U|ǫ log |Y|
ǫ2

+ ǫ log |Y|
ǫ

)

. So

I(U1;Y1) ≥ I(U3;Y3)− ξ ≥ I(U2;Y2)− ξ − ξ̄

which means

CS(PX1Y1
, L) ≥ CS(PX2Y2

, L)− ξ − ξ̄.

Using similar steps we can show

CS(PX2Y2
, L) ≥ CS(PX1Y1

, L)− ξ − ξ̄.

Now we put the two results together. Consider a sequence

(PXY,n, Ln)n∈N that converges to (P ∗
XY , L

∗) with respect to

d. Now we have

|CS(PXY,n, Ln)− CS(P
∗
XY , L

∗)|

≤ |CS(PXY,n, Ln)− CS(PXY,n, L
∗)|

+ |CS(PXY,n, L
∗)− CS(P

∗
XY , L

∗)|.

The second summand is arbitrarily small for n large enough

which follows from the continuity in PXY of CS(PXY , L
∗).

The first summand also gets arbitrarily small which follows

from the equicontinuity in L.

IV. SECURE STORAGE ON IMPERFECT DATABASE

Finally we consider the process for secure storage depicted

in Figure 3, where we replace the perfect database by an

imperfect one. Thus we have a more realistic model which

takes into account the imperfectness of the hardware used for

storage.

As before the process consists of two phases. In the first

phase, the first legitimate user reads Xn from the source and

gets the message to be stored Dn. Then the first legitimate
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user generates the helper message V m from Xn and Dn using

an encoder and stores it in the public database. In the second

phase the second legitimate user reads Zm from the database

and Y n from the source. The second legitimate user then uses a

decoder to reconstruct Dn from Zm and Y n and thus generates

D̂n. The eavesdropper interested in Dn reads V m from the

public database.

Remark 7. We consider the worst case scenario in the sense

that the eavesdropper knows V m and not a distorted version

of it.

We now define an information theoretic model for this secure

storage process.

Definition 6. Let n,m ∈ N. The imperfect storage model

consists of W ∈ P(Z|V), the RVs XY with PXY ∈ P(X×Y),
the RV Dn with PDn

∈ P(Dn), the encoder φ : Xn ×Dn →
Vm and the decoder ψ : Yn × Zm → D̂n. Consider the RV

XnY n with PXnY n = P⊗n
XY and independent of Dn. The RV

V m is generated from Xn and Dn using φ. The RV Zm is the

output of the memoryless channel Wm with channel input V m.

The RV D̂n is generated from Y n and Zm using ψ. We use

the term imperfect storage protocol for (φ, ψ). Additionally, it

holds that for all δ > 0 there is an n0 = n0(δ) such that for

all n ≥ n0

1
n
D(PDn

‖UDn
) < δ,

where UDn
denotes the uniform distribution on Dn.

Remark 8. We model the imperfect database (that consists of

m storage cells) by the DMC Wm.

We now discuss properties of intuitively good imperfect

storage protocols. We are interested in the largest possible

storage rate. Additionally, Dn should be reconstructed correctly

with high probability. As the eavesdropper has access to V m,

we want the average information required to specify Dn

when the V m is known to be as large as possible. From

an information theoretic point of view this is equivalent to

requiring that Dn be independent of V m.

We assume that the DMC is used η > 0 times for each

symbol read from the source, i.e. m = ⌈ηn⌉.

This suggests the following definitions of achievability for

the imperfect storage model.

Definition 7. Let η > 0. We call the rate R ≥ 0 an achievable

secure storage rate for the imperfect storage model if for all

δ > 0 there is an n0 = n0(δ) such that for all n ≥ n0 there is

an imperfect storage protocol with m = ⌈ηn⌉ such that

Pr(Dn = D̂n) ≥ 1− δ

I(V m;Dn) ≤ δ
1
n
log |Dn| ≥ R− δ.

We call the supremum of all achievable secure storage rates

the imperfect secure storage capacity C
η
S(PXY ,W ).

We now want to characterize C
η
S(PXY ,W ) as follows.

Theorem 4. It holds that

C
η
S(PXY ,W ) = max

U
I(U ;Y )

with RVs UXY such that U − X − Y and I(U ;X) ≤
ηmaxPV ∈P(V) I(PV ;W ).

Remark 9. This means that C
η
S(PXY ,W ) =

CS(PXY , ηC(W )), where C(W ) is the Shannon capacity of

W .

Proof: According to Theorem 2, given δ > 0 we can find

a n0(δ) such that for all n ≥ n0 there is a storage protocol

with rate constraint (φ, ψ) such that

1
n
log |Mn| = ηC(W )− ǫ

for δ > ǫ > 0 and

1
n
log |Dn| = max

U : U−X−Y
I(U ;X)≤ηC(W )−δ

I(U ;Y ).

For n0 large enough there also is a channel code (f, g),
f : Mn → Vm and g : Zm → Mn, (to account for the

imperfect storage medium) such that

Wm(g−1(m̄)|f(m̄)) ≥ 1− ǫ

for all m̄ ∈ Mn as

1
m
log |Mn| =

n
m

1
n
log |Mn|

= n
⌈ηn⌉ (ηC(W )− ǫ) ≤ C(W )− ǫ

η
.

We define the imperfect storage protocol (φn, ψn) for all

(xn, yn, dn, z
m) ∈ Xn × Yn ×Dn ×Zm as

φn(x
n, dn) = f(φ(xn, dn))

ψn(y
n, zm) = ψ(yn, g(zm)).

Using this protocol we have I(V m;Dn) ≤ I(Mn;Dn) ≤ δ

and Pr(Dn 6= D̂n) ≤ 2δ. We also have

1
n
log |Dn| ≥ max

U : U−X−Y
I(U ;X)≤ηC(W )

I(U ;Y )− δ̄(δ).

This follows from the continuity of CS(PXY , L) in L.

For the converse consider

log |Dn|

≤

n
∑

i=1

I(DnZ
mXi−1;Yi) + F +D(PDn

‖UDn
) + δ, (8)

which is derived as in the converse proof of Theorem 2, with M

replaced by Zm, see (11). Now consider RVs V Z with PV Z ∈
P(V × Z) such that I(V ;Z) = maxPV ∈P(V) I(PV ,W ). We

have

I(DnX
n;Zm) ≤ I(V m;Zm) ≤ mI(V ;Z)

from the data processing inequality and the fact that the noisy

channel is a DMC. (To see this consider PV mZm which implies

Zi − Vi − V i−1
1 V m

i+1Z
i−1
1 Zm

i+1 for all i. So

I(V m;Zm) ≤

m
∑

i=1

H(Zi)−H(Zi|V
mZi−1) =

m
∑

i=1

I(Vi;Zi)
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which implies the bound above.) Now consider (for i ∈
{1, · · · , n})

I(Zm;Xi|DnX
i−1)

= H(Xi|DnX
i−1)−H(Xi|Z

mDnX
i−1)

= H(Xi)−H(Xi|Z
mDnX

i−1)

= I(ZmDnX
i−1;Xi).

Using this equality we get

mI(V ;Z) ≥ I(DnX
n;Zm)

= I(Dn;Z
m) + I(Xn;Zm|Dn)

= I(Dn;Z
m) +

n
∑

i=1

I(Zm;Xi|DnX
i−1)

= I(Dn;Z
m) +

n
∑

i=1

I(DnZ
mXi−1;Xi)

≥

n
∑

i=1

I(DnZ
mXi−1;Xi), (9)

where the last expression equals (10) with M replaced by Zm.

From (8) and (9) and using the same steps as in the converse

proof of Theorem 2 we get for all ǫ > 0 that there is a RV U

with U −X − Y and

mI(V ;Z) ≥ nI(U ;X), 1
n
log |Dn| ≤ I(U ;Y ) + ǫ.

So

⌈nη⌉I(V ;Z) ≥ nI(U ;X),

which implies

(η + 1
n
)I(V ;Z) ≥ I(U ;X)

for all n. This implies ηI(V ;Z) ≥ I(U ;X). This concludes

the converse proof.

Remark 10. For the maximization in Theorem 4 it suffices to

consider alphabets U with |U| ≤ |X |+ 1.

As before we now show the continuity of C
η
S . Consider the

tuples (P1,W1), (P2,W2) ∈ P(X ×Y)×P(Z|V). We define

the distance between these tuples as

dW ((P1,W1), (P2,W2))

= ‖P1 − P2‖TV +max
v∈V

‖W1(·|v)−W2(·|v)‖TV .

Definition 8. C
η
S : P(X × Y) × P(Z|V) → R≥0 is said to

be continuous in (P,W ) ∈ P(X × Y)× P(Z|V) if for each

sequence (Pn,Wn)n∈N, (Pn,Wn) ∈ P(X ×Y)×P(Z|V) for

all n ∈ N, with

lim
n→∞

dW ((P,W ), (Pn,Wn)) = 0

we have

lim
n→∞

C
η
S(Pn,Wn) = C

η
S(P,W ).

Theorem 5. C
η
S : P(X ×Y)×P(Z|V) → R≥0 is continuous

on its domain.

Proof: We know that C
η
S(P,W ) = CS(P, ηC(W )), cf.

Remark 9. So C
η
S(P,W ) is a composition f1 ◦ fη2 of two

functions f1 and f
η
2 , namely f1 : P(X × Y) × R≥0 → R≥0,

f1(P,L) = CS(P,L) and f
η
2 : P(X×Y)×P(Z|V) → P(X×

Y)× R≥0, f
η
2 (P,W ) = (P, ηC(W )).

From Theorem 3 we know that f1 is continuous. We also

know that the Shannon capacity C(W ) is continuous, cf.

for example [22, p. 211]. So f
η
2 is continuous too. As the

composition of continuous functions is continuous, the desired

result follows.

V. SUPER ACTIVATION

As discussed before, the phenomenon of super activation is of

practical interest. For example in the context of medium access

control and resource allocation, super activation can be used

profitable. As super activation means that parallel resources

which are useless when used separately become useful when

used jointly, joint processing can lead to significant better

performance compared to separate processing.

In order to show that super activation occurs for a specific

scenario, we have to show that there exists an example of

parallel resources where the joint processing of the resouces

yields a capacity larger than zero, but where the capacities

of each individual resource are zero. We now consider super

activation in the context of the secure storage setting. Consider

the parallel resources corresponding to P 1
XY , P

2
XY ∈ P(X ×

Y) and W1,W2 ∈ P(Z|V) respectively, i.e. PX1Y1
⊗ PX2Y2

and W1 ⊗W2. In this context we mean by super activation

that we can choose PX1Y1
, PX2Y2

, W1 and W2 such that

C
η
S(PX1Y1

,W1) = 0, C
η
S(PX2Y2

,W2) = 0 but C
η
S(PX1Y1

⊗
PX2Y2

,W1 ⊗W2) > 0.

Remark 11. It is not a restriction that we assume that the

statistics of the independent resources are defined on the same

alphabets. If the alphabets are different, we can simply take

the union of the alphabets as the new alphabet.

Theorem 6. The phenomenon of super activation occurs for

C
η
S for all η > 0.

Remark 12. As the secure storage capacity without a rate

constraint on the helper message is CS(PXY ,∞) = I(X;Y ),
we have for RVs X1X2Y1Y2 with PX1Y1X2Y2

= PX1Y1
⊗

PX2Y2
, PX1Y1

, PX2Y2
∈ P(X × Y) that

I(X1X2;Y1Y2) = H(X1X2) +H(Y1Y2)−H(X1X2Y1Y2)

= H(X1) +H(X2) +H(Y1) +H(Y2)

−H(X1Y1)−H(X2Y2)

= I(X1;Y1) + I(X2;Y2)

and thus

CS(PX1Y1
⊗ PX2Y2

,∞) = CS(PX1Y1
,∞) + CS(PX2Y2

,∞),

i.e. we have additivity in the case of no rate constraint.

Comparing this to Theorem 6 we conclude that restricting

resources, as is done here for the rate of the helper message,

can have a great impact on the capacity and its behaviour as a

function of the system parameters.

Proof: Consider PX1Y1
, PX2Y2

∈ P(X × Y) and

W1,W2 ∈ P(Z|V). Assume X = Y , PX2Y2
is a product

distribution and PX1Y1
(x, y) = 1

|X | for x = y. Additionally,
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assume that maxPV ∈P(V) I(PV ,W1) = C(W1) = 0 but

maxPV ∈P(V) I(PV ,W2) = C(W2) > 0.

We have

C
η
S(PX1Y1

,W1) = max
U

I(U ;Y1)
a)
= max

U
I(U ;X1)

where the maximization is over all RVs U such that I(U ;X1) ≤
ηC(W1) and U−X1−Y1 and a) follows from our assumption

on PX1Y1
. From our assumption on W1 the rightmost term

equals maxU I(U ;X1), where the maximization is over all

RVs U such that I(U ;X1) = 0 and U − X1 − Y1, which

equals 0.

We also have

C
η
S(PX2Y2

,W2) = max
U

I(U ;Y2)

where the maximization is over all RVs U such that I(U ;X2) ≤
ηC(W2) and U − X2 − Y2. This expression can be upper

bounded by I(X2;Y2) which follows from U−X2−Y2. From

our assumption on PX2Y2
this equals 0.

We know that C(W1 ⊗W2) = C(W1) + C(W2) (see for

example [22, Exercise 6.14]).

We thus have C(W1 ⊗ W2) = C(W2) > 0 due to our

assumptions on W1 and W2.

Now consider

C
η
S(PX1Y1

⊗ PX2Y2
,W1 ⊗W2) = max

U1,U2

I(U1U2;Y1Y2)

where the maximization is over all RVs U1, U2 such that

I(U1U2;X1X2) ≤ ηC(W1 ⊗ W2) = ηC(W2) and U1U2 −
X1X2 − Y1Y2. This expression can be lower bounded by

maxU1,U2
I(U1U2;Y1Y2) where the maximization is over all

RVs U1, U2 such that I(U1U2;X1X2) ≤ ηC(W2) and

PU1U2X1X2Y1Y2
(u1, u2, x1, x2, y1, y2)

= P 1
XY (x1, y1)P

2
XY (x2, y2)PU1|X1

(u1|x1)PU2|X2
(u2|x2)

for all (u1, u2, x1, x2, y1, y2) ∈ U2 × X 2 × Y2. For these

PU1U2X1X2Y1Y2
we see, using the chain rule, that

I(U1U2;Y1Y2) = I(U1;Y1) + I(U2;Y2)

I(U1U2;X1X2) = I(U1;X1) + I(U2;X2).

So we have

C
η
S(PX1Y1

⊗ PX2Y2
,W1 ⊗W2)

≥ max
U1,U2

I(U1;Y1) + I(U2;Y2)

where the maximization is over all RVs U1, U2 such that

I(U1;X1) + I(U2;X2) ≤ ηC(W2) and

PU1U2X1X2Y1Y2
(u1, u2, x1, x2, y1, y2)

= P 1
XY (x1, y1)P

2
XY (x2, y2)PU1|X1

(u1|x1)PU2|X2
(u2|x2)

for all (u1, u2, x1, x2, y1, y2) ∈ U2 × X 2 × Y2. From our

assumptions on PX1Y1
, PX2Y2

and U2 −X2 − Y2 this lower

bound equals maxU1
I(U1;X1) where the maximization is over

all RVs U1 such that I(U1;X1) ≤ ηC(W2). As C(W2) > 0
this expression is greater than 0.

Super activation for channels has been shown for quantum

channels for the first time in [26], [27] for different scenarios.

Here the channel is modelled as an i.i.d. quantum channel. This

behaviour of i.i.d. quantum channels has long been conjectured

in quantum physics and both works contribute fundamentally

to quantum physics and resulted in many follow up works as

discussed in great detail by Renato Renner in his plenary talk

at the international congress of mathematical physics, ICMP

2012, and Charles Bennett at the international symposium on

information theory, ISIT 2019.

In quantum physics it has been assumed that super activation

is a special property of quantum systems and that for classical

communication this behaviour can not appear. This perception

is disproved in [28] for the first time. Here, it is shown that for

wiretap channels with an active attacker, i.e., a jammer, super

activation occurs for the secrecy capacity. Of course this result

is of interest for physical layer security where the influence of

jammers on secure communication is a significant field of study.

But in general the active attacker can not be modelled using

an i.i.d. model. In this respect we know from [28] that super

activation is indeed possible in classical information theory,

but these models are non-i.i.d. models.

In this work, we present the first classical communication

scenario where super activation can be shown for i.i.d. models.

Thus, the assumption on super activation being a special feature

of quantum information theory can even be disproved with a

classical i.i.d. model.

There is another interesting observation for the communica-

tion scenario considered in this work. The occurance of super

activation for secure communication over wiretap channels

with a jammer is strongly connected to the discontinuity of

the secrecy capacity, which results from the possible jamming

attacks. In contrast, the capacity for transmission of quantum

information over i.i.d. quantum channels allows for super

activation (as discussed above) but is a continuous function

of the quantum channel parameters. The results of this work

show that for classical i.i.d. communication scenarios super

activation can occur together with a continuous capacity

function. This means we have the same properties for a classical

communication scenario as for the quantum channel considered

in [26], [27]. In this respect, there is no principle difference

between quantum i.i.d. communication scenarios and classical

i.i.d. communication scenarios.
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APPENDIX

PROOF OF THEOREM 2

For the achievability part we choose the RV U . From

Theorem 1 we know that for all n ≥ n0(δ) there is a

SK generation protocol (fn, gn), fn : X
n → Kn × Mn and

gn : Y
n ×Mn → Kn , with

1
n
log |Kn| = I(U ;Y )− δ

1
n
log |Mn| = I(U ;X|Y ) + δ

for δ > 0 and (1), (2) and (3) hold (where the DMMS is the

DMMS from the storage model). Define the following storage
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protocol (φn, ψn), φn : X
n ×Dn → Mcom

n , where Mcom
n =

Mn ×Dn, and ψn : Y
n ×Mcom

n → Dn, for Dn = Kn.

φn(x
n, dn) =

(

p2
(

fn(x
n)
)

, p1
(

fn(x
n)
)

⊕ dn

)

ψn(y
n,mcom

n )

= p2
(

mcom
n

)

⊕

(

− gn

(

yn, p1
(

mcom
n

)

)

)

for all (xn, yn, dn,m
com
n ) ∈ Xn × Yn × Dn × Mcom

n ,

where we define the commutative group (Dn,⊕), cf. [22,

Proposition 17.1] and write pi(m
com
n ), i ∈ {1, 2} for the ith

component of mcom
n . This means the encoder φn works as

follows. We generate a SK and a corresponding helper message

using fn and encrypt the data to be stored on the database with

this SK. We store the helper message for SK generation together

with the encrypted data on the database. For the decoder ψn

we reconstruct the SK using gn and use it to decrypt the data.

We now analyse this storage protocol. For the error probability

we get

Pr(Dn = D̂n)

= Pr

(

p1
(

fn(X
n)
)

= gn

(

Y n, p2
(

fn(X
n)
)

)

)

≥ 1− δ.

We also have

1
n
log |Dn| =

1
n
log |Kn| = I(U ;Y )− δ.

For the secrecy requirement we get

I(Mn, Dn ⊕K;Dn)

= I(Dn ⊕K;Dn) + I(Mn;Dn|Dn ⊕Kn).

It holds that

H(Dn ⊕Kn|Dn) =
∑

dn∈Dn

PDn
(dn)H(dn ⊕Kn).

As fdn
: Kn → Kn, fdn

(kn) = dn ⊕ kn for all kn ∈ Kn, is

bijective for all dn ∈ Dn we have H(dn ⊕Kn) = H(Kn) for

all dn ∈ Dn. So

H(Dn ⊕Kn|Dn) = H(Kn) ≥ log |Kn| − δ.

As H(Dn ⊕Kn) ≤ log |Kn| we have

I(Dn ⊕Kn;Dn) = H(Dn ⊕Kn)−H(Dn ⊕Kn|Dn) ≤ δ.

Now consider

I(Mn;Dn|Dn ⊕Kn)

= H(Mn|Dn ⊕Kn)−H(Mn|Dn ⊕Kn, Dn).

We have

H(Mn|Dn ⊕Kn, Dn)

= H(Mn|Dn ⊕Kn, Dn,−Dn ⊕Dn ⊕Kn)

= H(Mn|DnKn) = H(Mn|Kn)

where for the last step we use that Dn is independent of MnKn.

So

I(Mn;Dn|Dn ⊕Kn)

≤ H(Mn)−H(Mn|Kn) = I(Mn;Kn) ≤ δ.

Therefore we have

I(Mn, Dn ⊕K;Dn) ≤ 2δ.

For the rate of the helper message we get

1
n
log |Mcom

n | = 1
n
log |Mn|+

1
n
log |Kn|

= I(U ;X|Y ) + I(U ;Y ) = I(U ;X).

So the storage protocol (φn, ψn) satisfies

1
n
log |Dn| ≥ I(U ;Y )− δ, 1

n
log |Mcom

n | ≤ I(U ;X) + δ

and Pr(Dn = D̂n) ≥ 1− δ and I(M com
n ;Dn) ≤ δ for δ > 0

and n large enough for all PU |X ∈ P(U|X ). So given a L ≥ 0,

when we want

1
n
log |Mcom

n | ≤ L+ δ,

we can choose all U such that I(U ;X) ≤ L which concludes

the achievability proof.

For the converse, consider

log |M| ≥ H(M)

= I(MDn;X
n)−H(Dn|M) +H(MDn|X

n)

= I(MDn;X
n)−H(Dn|M)

+H(Dn|X
n) +H(M |DnX

n)

= I(MDn;X
n) + I(Dn;M) ≥ I(MDn;X

n)

=

n
∑

i=1

I(MDn;Xi|X
i−1) =

n
∑

i=1

I(MDnX
i−1;Xi)

(10)

and

log |Dn| = H(Dn) +D(PDn
‖UDn

)

= I(Dn; D̂n) +H(Dn|D̂n) +D(PDn
‖UDn

)

≤ I(Dn;MY n) + F +D(PDn
‖UDn

)

≤ I(Dn;M) + I(DnM ;Y n) + F +D(PDn
‖UDn

)

≤

n
∑

i=1

I(DnM ;Yi|Y
i−1) + F +D(PDn

‖UDn
) + δ

=

n
∑

i=1

I(DnMY i−1;Yi) + F +D(PDn
‖UDn

) + δ,

where we use Fano’s inequality, the data processing inequality

and the strong secrecy requirement that the storage protocol

satisfies. (From Fano’s inequality F = δ log(|Dn| − 1) + h(δ),
where h is the binary entropy.) As M −XnDn −Y n we have

M −Xi−1DnXiYi − Y i−1 which implies Yi −MXi−1Dn −
Y i−1. So

I(DnMY i−1;Yi) ≤ I(DnMY i−1Xi−1;Yi)

= I(DnMXi−1;Yi)

and thus

log |Dn| ≤

n
∑

i=1

I(DnMXi−1;Yi) + F +D(PDn
‖UDn

) + δ.

(11)

We now define Ui = DnMXi−1. Consider the RV J that is

uniformly distributed on J = {1, · · · , n} and independent
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of XnY nDn. We have M − DnX
n − Y n which implies

DnMXi−1 − Xi − Yi for all i ∈ {1, · · · , n}. So we have

Ui −Xi − Yi. We also have

n
∑

i=1

I(Ui;Yi) = n

n
∑

i=1

1
n
I(Ui;Yi)

= n

n
∑

i=1

PJ(i)I(Ui;Yi) = nI(UJ ;YJ |J)

= n(H(YJ |J)−H(YJ |UJJ))

a)
= nI(YJ ;UJJ) = nI(Ȳ ; Ū)

and equivalently

n
∑

i=1

I(Ui;Xi) = nI(X̄; Ū)

where we define Ȳ = YJ , X̄ = XJ and Ū = UJJ . For a) we

use the fact that

PXJJ(x, i) =
1
n
PXi

(x) = PX(x) 1
n

and thus

PXJ
(x) =

n
∑

i=1

PXJJ(x, i) = PX(x).

So

H(XJ |J) =

n
∑

i=1

1
n
H(Xi) = H(PX) = H(XJ)

(and equivalently H(YJ |J) = H(YJ)). We also have

PX̄Ȳ (x, y) = PXJYJ
(x, y)

=

n
∑

i=1

PXJYJJ(x, y, i) =

n
∑

i=1

PXiYi
(x, y) 1

n

=

n
∑

i=1

PXY (x, y)
1
n
= PXY (x, y)

and Ū − X̄ − Ȳ as

PŪX̄Ȳ ((j, uj), x, y) = PJUjXjYj
((j, uj), x, y)

= PJ(j)PUjXjYj
(uj , x, y)

= PJ(j)PUj |Xj
(uj , x)PXjYj

(x, y)

= PJUj |Xj
((j, uj)|x)PXY (x, y)

= PŪ |X̄((j, uj)|x)PX̄Ȳ (x, y).

So if we choose n large enough and δ small enough, for every

ǫ > 0 there is RV U with U −X − Y and

1
n
log |Dn| ≤ I(U ;Y ) + ǫ L+ ǫ ≥ 1

n
log |M| ≥ I(U ;X).

This completes the converse proof.
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