
1

Side-Channel Hardware Trojan for Provably-Secure
SCA-Protected Implementations

Samaneh Ghandali,Thorben Moos, Amir Moradi, Christof Paar, Fellow, IEEE

Abstract—Hardware Trojans have drawn the attention of
academia, industry and government agencies. Effective detection
mechanisms and countermeasures against such malicious designs
can only be developed when there is a deep understanding of
how hardware Trojans can be built in practice, in particular
Trojans specifically designed to avoid detection. In this work,
we present a mechanism to introduce an extremely stealthy
hardware Trojan into cryptographic primitives equipped with
provably-secure first-order side-channel countermeasures. Once
the Trojan is triggered, the malicious design exhibits exploitable
side-channel leakage, leading to successful key recovery attacks.
Generally, such a Trojan requires neither addition nor removal
of any logic which makes it extremely hard to detect. On ASICs,
it can be inserted by subtle manipulations at the sub-transistor
level and on FPGAs by changing the routing of particular signals,
leading to zero logic overhead. The underlying concept is based
on modifying a securely-masked hardware implementation in
such a way that running the device at a particular clock frequency
violates one of its essential properties, leading to exploitable
leakage. We apply our technique to a Threshold Implementation
of the PRESENT block cipher realized in two different CMOS
technologies, and show that triggering the Trojan makes the ASIC
prototypes vulnerable.

Index Terms—Hardware Trojan, Threshold Implementation,
Side-Channel Analysis (SCA), PRESENT, ASIC.

I. INTRODUCTION

Cryptographic primitives are often the most trusted com-
ponents in modern security solutions, ranking from network
routers to IoT devices. Unfortunately, this makes cryptographic
algorithms an attractive target for subversion by malicious
actors. Manipulating hardware implementations as opposed to
software implementations can lead to cryptographic Trojans
that are particularly difficult to detect. It is widely believed that
such Trojans are of special interest to nation-state adversaries.

Hardware Trojans have moved in the focus of academia,
industry and government agencies over the last decade. In partic-
ular, Trojan detection has become an active research area. At the
same time, the development of effective detection mechanisms
and countermeasures require a thorough understanding of how
hardware Trojans can be built. This contribution is concerned
with cryptographic Trojans which possess zero overhead in
terms of logic resources and are thus, extremely stealthy.

There are several paths to introduce a Trojan into an
IC during the design cycle. Three general approaches are:
insertion (i) by an untrusted semiconductor foundry during

S. Ghandali is with the Department of Electrical and Computer Engi-
neering, University of Massachusetts, Amherst, MA,01003 USA
E-mail: samaneh@umass.edu.

T. Moos, A. Moradi and C. Paar are with the Horst Görtz Institute for
IT-Security, Ruhr University Bochum, Bochum, Germany
E-mail: {firstname.lastname}@rub.de.

manufacturing, (ii) by the original hardware designer, possibly
pressured by a government body or through subverted design
tools, and (iii) through third-party IP cores. Most hardware
Trojans require the modification or insertion of additional logic
resources (which can be done at different abstraction levels).
In most cases, adversaries attempt to design and implement
Trojans in such a way that the chance of detection becomes
very low. Our focus in this contribution are Trojans which
disclose crucial secrets through side channels. The first such
Trojan has been introduced in [1], [2], which stealthily leaks
out the cryptographic key through a power side channel.
The underlying Trojan construction is independent of the
cryptographic algorithm and is focused on key-leakage. The
Trojan, based on a moderately large circuit including an LFSR
and leaking circuit, is inserted at the netlist or HDL level.
Such Trojans, however, can be detected through standard
VLSI analysis techniques, e.g., through imaging-based reverse
engineering. Another attack vector for hardware Trojans is
the subversion of side-channel countermeasures. Cryptographic
implementations are often threatened by side-channel analysis
(SCA). Two decades after the introduction of SCA attacks [3],
[4], integration of dedicated countermeasures is a must in
many applications. In a follow-up work to reference [2], a
related concept that subverts an SCA-protected implementation
is introduced [5]. The technique is based on inserting a logical
circuit forming an LFSR-based Trojan, which leaks the internal
state of the PRNG used for masking. The adversary can now
detect the internal state of the PRNG by means of SCA leakages,
and can conduct DPA attacks based on her knowledge of
the mask. It should be noted that products which need to be
protected against physical attacks are often evaluated by a
third-party certification body, e.g., through a Common Criteria
evaluation lab. Therefore, due to its relatively large circuit,
such a Trojan will likely be detected by an inspector. Another
relevant prior work is reference [6], where a Trojan is inserted
by changing the dopant polarity of a few transistors in a
circuit that realizes the DPA-resistant logic style iMDPL [7].
However, iMPDL (and related logic styles) do not provide
perfect SCA protection, and the leakage of an iMDPL circuit
can still be exploited by ordinary SCA adversaries, even without
a Trojan [8]. In reference [9] analog and RF Trojans are
introduced, which can detect an extremely rare sequential event
as a trigger with just a handful of transistors added to the circuit.
This poses a real threat to the IC supply chain. However, since
such analog Trojans are triggered by high frequency wire-flops
in the processor, abnormal toggling detection methods may
detect them [10].

ar
X

iv
:1

91
0.

00
73

7v
1

 [
cs

.C
R

]
 2

2
Se

p
20

19

Our contribution: Integrating a side-channel Trojan into an
SCA-protected design is extremely challenging if the device
will be evaluated by a third-party certification body. In this
practical setting, the device should provide the desired SCA
protection in a white-box scenario, i.e., all design details
including the netlist are known to the evaluation lab. In this
work, we present a mechanism to design a provably- and
practically-secure SCA-protected implementation which can
be turned into an unprotected implementation by a Trojan
adversary. In many cases, our general Trojan concept does not
require the addition of any logic (even a single gate) to the
design, making it extremely hard to detect. In case of ASIC
platforms, the Trojan may be introduced by slightly changing
the characteristics of a few transistors, and for FPGA platforms
by changing the routing of particular signals. Unlike previous
work, it does not affect the provable-security feature of the
underlying design unless the Trojan is triggered. Also, our
technique is not based on the leakage of the PRNG. More
precisely, our technique injects a parametric Trojan that can
be triggered, i.e., under normal condition the device does not
exhibit any SCA leakage to be detected by an evaluation lab.
By increasing the clock frequency of the subverted device
(or by decreasing its supply voltage) the Trojan is triggered
and exhibits exploitable leakage. In order to avoid accidental
triggering during regular operation and to make detection by
evaluation labs unlikely, we choose a trigger frequency that is
beyond the specified maximum operational frequency of the
device (which is smaller than the actual maximum frequency
of the design due to the inserted Trojan). As shown in the
following sections, there is a carefully chosen gap between
the specified maximum clock frequency of the device and
the clock frequency where the Trojan is triggered. In other
words, by increasing the clock frequency such that the critical
path delay is violated, the device starts to operate faulty; by
further increasing the clock frequency, the device operates
again correctly while exhibiting SCA leakage, i.e., our inserted
Trojan becomes active.
As a case study, we integrate this Trojan into a threshold
implementation of the PRESENT cipher, which is a popular
block cipher for embedded applications [11]. In contrast to the
results presented in [50], we do not target FPGA platforms,
but ASICs here. We succeeded in implementing the malicious
design in two different low-power CMOS process technologies,
90 nm and 65 nm, as part of side-channel test chips. We
present SCA evaluations of both ASICs based on real-silicon
measurements, both when the Trojan is triggered and when it
is not, which confirm the soundness of our approach. However,
during the design process we identified a number of obstacles
to overcome when integrating such a Trojan into lightweight
ciphers implemented in advanced CMOS technology. As a
result, these first Trojan implementations on ASIC platforms
do not come at exactly zero overhead, but require the addition
of a few cells (less than half a percent of the cipher circuit’s
area). This result, however, does not contradict the potential
stealthiness, in terms of zero overhead and negligible frequency
reduction, of the general approach. In this regard, we detail in
which cases such a Trojan can indeed be implemented at zero
overhead and in which cases a few additional gates are needed.

Outline: Section II deals with necessary background and
definitions in the areas of hardware Trojans and threshold
implementations as an SCA countermeasure. Afterwards, in
Section III we express our core idea how to insert our Trojan
into a secure threshold implementation. In Section IV we
give details on how to apply such a technique on a threshold
implementation of the PRESENT cipher, and in Section V
we explain in detail how to realize such an implementation
in ASIC technology. Finally, in Section VI the corresponding
results of an ASIC-based case study including SCA evaluations
of the manufactured devices are presented.

II. BACKGROUND

A. Hardware Trojans

In general, a hardware Trojan is a back-door that can
be inserted into an integrated circuit as an undesired and
malicious modification, which makes the behavior of the
IC incorrect. There are many ways to categorize Trojans
such as categorizing based on physical characteristics, design
phase, abstraction level, location, triggering mechanism, and
functionality. One common Trojan categorization is based on
the activation mechanism (Trojan trigger) and the effect on
the circuit functionality (Trojan payload). A set of conditions
that cause a Trojan to be activated is called trigger. Trojans
can combinationally or sequentially be triggered. An attacker
chooses a rare trigger condition so that the Trojan would not
be triggered during conventional design-time verification and
manufacturing test. Sequentially-triggered Trojans (time bombs)
are activated by the occurrence of a sequence of rare events,
or after a period of continuous operation [12].

The goal of the Trojan can be achieved by a payload which
can change the circuit functionally or leak its secret information.
In [13] a categorization method according to how the payload of
a Trojan works has been defined; some Trojans after triggering,
propagate internal signals to output ports which can reveal
secret information to the attackers (explicit payload). Other
Trojans may make the circuit malfunction or destroy the whole
chip (implicit payload). Another categorization for actions of
hardware Trojans has been presented in [14], in which the
actions can be categorized into classes of modify functionality,
modify specification, leak information, and denial of service.

The work presented in [6] is concerned with building stealthy
Trojans at the layout level. A hardware Trojan was inserted
into a cryptographically-secure PRNG and into a side-channel
resistant Sbox by manipulating the dopant polarity of a few
registers. Another class of hardware Trojans – called Malicious
Off-chip Leakage Enabled by Side-channels (MOLES) – has
been presented in [1], which can retrieve secret information
through side channels. They formulated the mechanism and
detection methods of MOLES in theory and provided a
verification process for multi-bit key extractions. In [15] a
design methodology for building stealthy parametric hardware
Trojans and its application to Bug Attacks [16], [17] has been
proposed. The Trojans are based on increasing the delay of
gates of a very rare-sensitized path in a combinatorial circuit,
such as an arithmetic multiplier circuit. The Trojans are stealthy
and have rare trigger conditions, so that the faulty behavior of

2

the circuit under attack only occurs for very few combinations
of the input vectors. Also an attack on the ECDH key agreement
protocol by this Trojan has been presented in this work.

B. Threshold Implementations

It can definitely be said that masking is the most-studied
countermeasure against SCA attacks. It is based on the concept
of secret sharing, where a secret x (e.g., intermediate values
of a cipher execution) is represented by a couple of shares
(x1, . . . ,xn). In case of an (n, n)-threshold secret sharing
scheme, having access to t < n shares does not reveal any
information about x. One of such schemes is Boolean secret
sharing, also known as Boolean masking in the context of SCA,

where x =
n⊕

i=1

xi. Hence, if the entire computation of a cipher

is conducted on such a shared representation, its SCA leakage
will be (in average) independent of the secrets as long as no
function (e.g., combinatorial circuit) operates on all n shares.

Due to the underlying Boolean construction, application of
a linear function L(.) over the shares is straightforward since

L(x) =
n⊕

i=1

L(xi). All the difficulties belong to implementing

non-linear functions over such a shared representation. This
concept has been applied in hardware implementations of AES
(mainly with n = 2) with no success [18]–[21] until the
Threshold Implementation (TI) – based on sound mathematical
foundations – has been introduced in [22], which defines the
minimum number of shares n ≥ t + 1 with t the algebraic
degree of the underlying non-linear function. For simplicity
(and as our case study is based on) we focus on quadratic
Boolean functions, i.e., t = 2, and minimum number of shares
n = 3. Suppose that the TI of the non-linear function y = F(x)
is desired, i.e., (y1,y2,y3) = F∗(x1,x2,x3), where

y1 ⊕ y2 ⊕ y3 = F(x1 ⊕ x2 ⊕ x3).

Indeed, each output share yi∈{1,2,3} is provided by a component
function F i(., .) which receives only two input shares. In other
words, one input share is always missing in every component
function. This, which is a requirement defined by TI as non-
completeness, supports the aforementioned concept that “no
function (e.g., combinatorial circuit) operates on all n shares”,
and implies the given formula n ≥ t+1. Therefore, three com-
ponent functions

(
F1
(
x2,x3

)
,F2

(
x3,x1

)
,F3

(
x1,x2

))
form the shared output (y1,y2,y3).

In order to fulfill the above-given statement that “having
access to t < n shares does not reveal any information about x”,
the shares need to follow a uniform distribution. For simplicity
suppose that n = 2, and the shares (x1,x2) represent secret x.
If the distribution of x1 has a bias (i.e., not uniform) which is
known to the adversary, he can observe the distribution of x2 =
x⊕x1 and guess x. Hence, the security of masking schemes1

relies on the uniformity of the masks. More precisely, when
x1 = m, x2 = x ⊕m, and m is taken from a randomness
source (e.g., a PRNG), the distribution of m should be uniform
(or let say with full entropy).

1Except those which are based on low-entropy masking [23], [24].

The same holds for higher-order masking, i.e., n > 2.
However, not only the distribution of every share but also the
joint distribution of every t < n shares is important. In case of
F∗(., ., .) as a TI of a bijective function F(.), the uniformity
property of TI is fulfilled if F∗(., ., .) forms a bijection.
Otherwise, the security of such an implementation cannot
be guaranteed. Note that fulfilling the uniformity property of
TI constructions is amongst its most difficult challenges, and
it has been the core topic of several articles like [22], [25]–
[28]. Alternatively, the shares can be remasked at the end of
every non-uniformly shared non-linear function (see [29], [30]),
which requires a source to provide fresh randomness at every
clock cycle. Along the same line, another type of masking
in hardware (which reduces the number of shares) has been
developed in [31], [32], which (almost always) needs fresh
randomness to fulfill the uniformity.

We should emphasize that the above given expressions
illustrate only the first-order TI of bijective quadratic functions.
For other cases including higher-order TI we refer the interested
reader to the original articles [22], [25], [27].

III. TECHNIQUE

As explained in the former section – by means of TI
– it is possible to realize hardware cryptographic devices
secure against certain SCA attacks. Our goal is to create
a situation where an SCA-secure device becomes insecure
while it still operates correctly. Such a dynamic transition
from secure to insecure should be available and known only
to the Trojan attacker. To this end, we target the uniformity
property of a secure TI construction. More precisely, we plan
to construct a secure and uniform TI design which becomes
non-uniform (and hence insecure) at particular environmental
conditions. In order to trigger the Trojan (or let say to provide
such a particular environmental conditions) for example we
select a higher clock frequency than the specified maximum
operational frequency of the device, or a lower power supply
than the device nominal supply voltage. It should not be
forgotten that under such conditions the underlying device
should still maintain its correct functionality.

To realize such a scenario – inspired from the stealthy
parametric Trojan introduced in [15] – we intentionally lengthen
certain paths of a combinatorial circuit. This is done in such
a way that – by increasing the device’s clock frequency or
lowering its supply voltage – such paths become faulty earlier
than the other paths. We would achieve our goal if i) the faults
cancel each others’ effect, i.e., the functionality of the design
is not altered, and ii) the design does not fulfill the uniformity
property anymore.

In order to explain our technique – for simplicity without
loss of generality – we focus on a 3-share TI construction. As
explained in Section II-B – ignoring the uniformity – achieving
a non-complete shared function F∗(., ., .) of a given quadratic
function F(.) is straightforward. Focusing on one output bit
of F(x), and representing x by s input bits 〈xs, . . . , x1〉, we
can write

Fi(〈xs, . . . , x1〉) =k0 ⊕ k1x1 ⊕ k2x2 ⊕ . . .⊕ ksxs⊕
k1,2x1x2 ⊕ k1,3x1x3 ⊕ . . .⊕ ks−1,sxs−1xs.

3

The coefficients k0, . . . , ks−1,s ∈ {0, 1} form the Algebraic
Normal Form (ANF) of the quadratic function Fi : {0, 1}s →
{0, 1}. By replacing every input bit xi by the sum of three
corresponding shares x1i ⊕ x2i ⊕ x3i , the remaining task is just
to split the terms in the ANF to three categories in such a way
that each category is independent of one share. This can be
done by a method denoted by direct sharing [25] as
• F1

i (., .) contains the linear terms x2i and the quadratic
terms x2ix

2
j and x2ix

3
j .

• F2
i (., .) contains the linear terms x3i and the quadratic

terms x3ix
3
j and x3ix

1
j .

• F3
i (., .) contains the linear terms x1i and the quadratic

terms x1ix
1
j and x1ix

2
j .

The same is independently applied on each output bit of F(.)
and all three component functions F1

(
x2,x3

)
, F2

(
x3,x1

)
,

F3
(
x1,x2

)
are constructed that fulfill the non-completeness,

but nothing about its uniformity can be said.
There are indeed two different ways to obtain a uniform TI

construction:
• If s (the underlying function size) is small, i.e., s ≤ 5, it

can be found that F(.) is affine equivalent to which s-bit
class. More precisely, there is a quadratic class Q which can
represent F as A′ ◦Q ◦A (see [33] for an algorithm to find
A and A′ given F and Q). A classification of such classes
for s = 3 and s = 4 are shown in [25] and for s = 5 in [34].
Since the number of existing quadratic classes are restricted,
a uniform TI can be found by exhaustive search. Note that
while for many quadratic classes the direct sharing (explained
above) can reach to a uniform TI, for some quadratic classes
no uniform TI exists unless the class is represented by a
composition of two other quadratic classes [25]. Supposing
that Q∗(., ., .) is a uniform TI of Q(.), applying the affine
functions A′ and A accordingly on each input and output
of the component function Q∗ would give a uniform TI of
F(.):

F1(x2,x3) =A′ ◦ Q1
(
A
(
x2
)
,A
(
x3
))
,

F2(x3,x1) =A′ ◦ Q2
(
A
(
x3
)
,A
(
x1
))
,

F3(x1,x2) =A′ ◦ Q3
(
A
(
x1
)
,A
(
x2
))
.

This scenario has been followed in several works, e.g., [35]–
[39].

• Having a non-uniform TI construction, e.g., obtained by
direct sharing, we can add correction terms to the component
functions in such a way that the correctness and non-
completeness properties are not altered, but the uniformity
may be achieved. For example, the linear terms x2i and/or the
quadratic terms x2ix

2
j as correction terms can be added to the

same output bit of both component functions F1
(
x2,x3

)
and F3

(
x1,x2

)
. Addition of any correction term changes

the uniformity of the design. Hence, by repeating this process
– up to examining all possible correction terms and their
combination, which is not feasible for large functions – a
uniform construction might be obtained. Such a process has
been conducted in [26], [40] to construct uniform TI of
PRESENT and Keccak non-linear functions.
We should here refer to a similar approach called remask-
ing [25], [30] where – instead of correction terms – fresh

2 134

Clock period
1
2
3
4

fault-free, uniform
unstable
fault-free, non-uniform
faulty

x1 f 1

x2 f 2

x3 f 3

C

C

y1

y2

y3

FIGURE 1: Exemplary TI construction with a correction term C.

randomness is added to the output of the component functions
to make the outputs uniform. In this case, obviously a certain
number of fresh mask bits are required at every clock cycle
(see [30], [41]).

Our technique is based on the second scheme explained
above. If we make the paths related to the correction terms the
longest, by increasing the clock frequency such paths are the
first whose delays are violated. As illustrated, each correction
term must be added to two component functions (see Figure 1).
The paths must be very carefully altered in such a way that
the path delay of both instances of the targeted correction term
are the longest in the entire design and relatively the same.
Hence, at a particular clock frequency both instances of the
correction terms are not correctly calculated while all other
parts of the design are fault free. This enables the design to still
work properly, i.e., it generates correct ciphertexts assuming
that the underlying design realizes an encryption function. It
means that the design operates like an alternative design where
no correction terms exist. Hence, the uniformity of the TI
construction is not fulfilled and SCA leakage can be exploited.
To this end, we should keep a margin between i) the path delay
of the correction terms and ii) the critical path delay of the rest
of the circuit, i.e., that of the circuit without correction terms.
This margin guarantees that at a certain high clock frequency
the correction terms are canceled out but the critical path delay
of the remaining circuit is not violated.

We would like to emphasize that in an implementation
of a cipher once one of the TI functions generates non-
uniform output (by violating the delay of correction terms), the
uniformity is not maintained in the next TI functions and it leads
to first-order leakage in all further rounds. If the uniformity
is achieved by remasking (e.g., in [42]), the above-expressed
technique can have the same effect by making the XOR with
fresh mask the longest path. Hence, violating its delay in one
TI function would make its output non-uniform, but the fresh
randomness may make the further rounds of the cipher again
uniform.

Based on Figure 2, which shows a corresponding timing
diagram, the device’s status can be categorized into four states:

• at a low clock frequency (denoted by 1) the device operates
fault free and maintains the uniformity,

• by increasing the clock frequency (in the 2 period), the
circuit first starts to become unstable, when indeed the
correction terms do not fully cancel each others’ effect,
and the hold time and/or setup time of the registers are

4

2 134

Clock period
1
2
3
4

fault-free, uniform
unstable
fault-free, non-uniform
faulty

FIGURE 2: Status of the design with Trojan at different clock
frequencies.

violated,
• by further increasing the clock frequency (in the 3 period),

the delay of both instances of the correction term are violated
and the circuit operates fault free, but does not maintain the
uniformity, and

• by even further increasing the clock frequency (marked by
4), the clock period becomes smaller than the critical path

delay of the rest of the circuit, and the device does not
operate correctly.

The aforementioned margin defines the length of the 2 and
3 periods, which are of crucial importance. If they are very

wide, the maximum operation frequency of the resulting circuit
is obviously reduced, and the likelihood of the inserted Trojan
to be detected by an evaluator is increased. Correct functionality
of the circuit is required in period 3 , to make sure that the
correct sensitive intermediate values are processed by the circuit
and revealed to the Trojan attacker through their side-channel
leakage.

IV. APPLICATION

In order to show an application of our technique, we focus
on a first-order TI design of the PRESENT cipher [11] as
a case study. The PRESENT Sbox is a 4-bit cubic bijection
S : C56B90AD3EF84712. Hence, its first-order TI needs at
least n = 4 shares. Alternatively, it can be decomposed to two
quadratic bijections S : F ◦ G enabling the minimum number
of shares n = 3 at the cost of having an extra register between
F∗ and G∗ (i.e., TI of F and G). As shown in [25], S is affine
equivalent to class C266 : 0123468A5BCFED97, which can be
decomposed to quadratic bijections with uniform TI. The works
reported in [36], [37], [43] have followed this scenario and
represented the PRESENT Sbox as S : A′′ ◦ Q′ ◦ A′ ◦ Q ◦ A,
with many possibilities for the affine functions A′′, A′, A
and the quadratic classes Q′ and Q whose uniform TI can be
obtained by direct sharing (see Section III).

However, the first TI of PRESENT has been introduced
in [26], where the authors have decomposed the Sbox by
G : 7E92B04D5CA1836F and F : 08B7A31C46F9ED52. They
have accordingly provided a uniform TI of each of such 4-bit
quadratic bijections. We focus on this decomposition, and select
G as the target where our Trojan is implemented. Contrary to
all other related works, we first try to find a non-uniform TI of

G(.), and we later make it uniform by means of correction terms.
We start with the ANF of G(〈d, c, b, a〉) = 〈g3, g2, g1, g0〉:

g0 = 1⊕ a⊕ dc⊕ db⊕ cb, g2 = 1⊕ c⊕ b,
g1 = 1⊕ d⊕ b⊕ ca⊕ ba, g3 = c⊕ b⊕ a.

One possible sharing of y = G(x) can be represented by(
y1,y2,y3

)
=
(
G1
(
x2,x3

)
,G2

(
x3,x1

)
,G3

(
x1,x2

))
as

y10 =1⊕ a2 ⊕ d2c3 ⊕ d3c2 ⊕ d2b3 ⊕ d3b2 ⊕ c2b3 ⊕ c3b2⊕
d2c2 ⊕ d2b2 ⊕ c2b2

y11 =1⊕ b2 ⊕ d3 ⊕ c2a3 ⊕ c3a2 ⊕ b2a3 ⊕ b3a2 ⊕ c2a2 ⊕ b2a2

y12 =1⊕ c2 ⊕ b2

y13 =c2 ⊕ b2 ⊕ a2

y20 =a3 ⊕ d3c3 ⊕ d1c3 ⊕ d3c1 ⊕ d3b3 ⊕ d1b3 ⊕ d3b1⊕
c3b3 ⊕ c1b3 ⊕ c3b1

y21 =b3 ⊕ d1 ⊕ c1a3 ⊕ c3a1 ⊕ b1a3 ⊕ b3a1 ⊕ c3a3 ⊕ b3a3

y22 =c3 ⊕ b3

y23 =c3 ⊕ b3 ⊕ a3

y30 =a1 ⊕ d1c1 ⊕ d1c2 ⊕ d2c1 ⊕ d1b1 ⊕ d1b2 ⊕ d2b1⊕
c1b1 ⊕ c1b2 ⊕ c2b1

y31 =b1 ⊕ d2 ⊕ c1a2 ⊕ c2a1 ⊕ b1a2 ⊕ b2a1 ⊕ c1a1 ⊕ b1a1

y32 =c1 ⊕ b1

y33 =c1 ⊕ b1 ⊕ a1,

with xi∈{1,2,3} = 〈di, ci, bi, ai〉. This is not a uniform sharing
of G(.), and by searching through possible correction terms we
found three correction terms c1b1, c2b2, and c3b3 to be added
to the second bit of the above-expressed component functions,
that lead us to a uniform TI construction. More precisely, by
defining

C1(x2,x3) = c2b2 ⊕ c3b3,
C2(x3,x1) = c1b1 ⊕ c3b3,
C3(x1,x2) = c1b1 ⊕ c2b2,

and adding them respectively to y11 , y21 , and y31 , the resulting TI
construction becomes uniform. If any of such correction terms
is omitted, the uniformity is not maintained. In the following
we focus on a single correction term c2b2 which should be
added to G1(., .) and G3(., .).

A. Inserting the Trojan

We explain how to realize the Trojan functionality by
path delay fault model [44], without modifying the logic
circuit. The Trojan can be triggered by violating the delay
of the combinatorial logic paths that pass through the targeted
correction terms c2b2. It is indeed a parametric Trojan, which
does not require any additional logic. The Trojan is inserted
by modifying a few gates during manufacturing, so that their
delays increase and add up to the path delay faults.

Given in [15], the underlying method to create a triggerable
and stealthy delay-based Trojan consists of two phases: path
selection and delay distribution. In the first phase, a set

5

of uniquely-sensitized paths are found that passes through
a combinatorial circuit from primary inputs to the primary
outputs. Controllability and observability metrics are used to
guide the selection of which gates to include in the path to
make sure that the path(s) are uniquely sensitized2. Furthermore,
a SAT-based check is performed to make sure that the path
remains sensitizable each time a gate is selected to be added to
the path. After a set of uniquely-sensitized paths is selected, the
overall delay of the path(s) must be increased so that a delay
fault occurs when the path is sensitized. However, any delay
added to the gates of the selected path may also cause delay
faults on intersecting paths, which would cause undesirable
errors and affect the functionality of the circuit. The delay
distribution phase addresses this problem by smartly choosing
delays for each gate of the selected path to minimize the number
of faults caused by intersecting paths. At the same time, the
approach ensures that the overall path delay is sufficient for
the selected paths to make it faulty.

1) ASIC Platforms: In an ASIC platform, the necessary
delays for such Trojans can be introduced in a multitude of
ways. Apart from the addition of extra gates to the chosen
paths there is also the attractive option to achieve the same
goal by slight modifications on the sub-transistor level so that
only the parameters of a few transistors of the design are
changed. To increase the delays of transistors in stealthy ways,
there are many possible ways in practice. Such a Trojan is
very difficult to be detected by e.g., functional testing, visual
inspection, or side-channel profiling, because not a single
transistor is removed or added to the design and the changes to
the individual gates are minor. Also, full reverse-engineering
of the IC would unlikely reveal the presence of the malicious
manipulation in the design. Furthermore, this Trojan would
not be present at higher abstraction levels and hence cannot be
detected at those levels, because the actual Trojan is inserted
at the sub-transistor level. There are several stealthy ways to
slightly change the parameters of transistors of a gate and make
it slower. Exemplarily, we list three methods below.

Decreasing the Width: Usually a standard cell library has
different drive strengths for each logic gate type, which
correspond to various transistor widths. Current of a transistor
is linearly proportional to the transistor width, therefore a
transistor with smaller width is slower to charge its load
capacitance. One way to increase the delay of a gate is to
substitute it with its weaker version in the library which has
smaller width, or to create a custom version of the gate with
an extremely narrow width, if the lower level information of
the gate is available in the library (e.g., SPICE model).

Raising the Threshold: A common way of increasing the
delay of a gate is to increase the threshold voltage of its
transistors by body biasing or doping manipulation. Using high
and low threshold voltages at the same time in a design (i.e.,
Dual-Vt design) is very common approach and provides the
designer with more options to satisfy the speed goals of the
design. Devices with low threshold voltage are fast and used

2It means that the selected paths are the only ones in the circuit whose
critical delay can be violated.

where delay is critical; devices with high threshold voltage are
slow and used where power consumption is important.

Increasing the Gate Length: Gate length biasing can increase
delay of a gate by reducing the current of its transistors [45].

2) FPGA Platforms: In case of the FPGAs, the combi-
natorial circuits are realized by Look-Up Tables (LUT), in
currently-available Xilinx FPGAs, by 6-to-1 or 5-to-2 LUTs
and in former generations by 4-to-1 LUTs. The delay of the
LUTs cannot be changed by the end users; alternatively we
offer using Through Switch Boxes to make certain paths longer.
The routings in FPGA devices are made by configuring the
switch boxes. Since the switch boxes are made by active
components realizing logical switches, a signal which passes
through many switch boxes has a longer delay compared to a
short signal. Therefore, given a fully placed-and-routed design
we can modify the routings by lengthening the selected signals.
This is for example feasible by means of Vivado Design
Suite as a standard tool provided by Xilinx for recent FPGA
families and FPGA Editor for the older generations. It in
fact needs a high level of expertise, and cannot be done at HDL
level. Interestingly, the resulting circuit would not have any
additional resource consumption, i.e., the number of utilized
LUTs, FFs and Slices, and hence is hard to detect particularly
if the utilization reports are compared.
Focusing on our target, the only paths which should be
lengthened are both instances of c2b2 in G1(., .) and G3(., .).
Considering Figure 1, the XOR gate which receives the F1

and C output should be the last gate in the combinatorial circuit
generating y11 , i.e., the second bit of G1(., .). The same holds
for y31 , i.e., the second bit of G3(., .). In the following section
we explain in detail which algorithms, metrics and heuristics
need to be used to select and lengthen the correct paths in
arbitrary ASIC designs of such kind.

V. ASIC IMPLEMENTATION

For ASIC platforms, we utilize the stealthy parametric Trojan
introduced in [15]. It consists of two main phases: path selection
phase and delay distribution phase. We briefly explain each of
these phases in subsections V-A and V-B. Our goal is to make
the paths related to our target correction term, which is added
to two component functions, the longest so that by increasing
the clock frequency such paths are the first whose delays are
violated. The paths must be very carefully selected and altered
in such a way that the path delay of both instances of the
targeted correction term are the longest in the entire design and
relatively the same. Hence, at a particular clock frequency both
instances of the correction terms are not correctly calculated
while all other parts of the design are fault free. This enables
the design to still work properly.

A. Rare Path Selection Phase

The path selection phase seeks to find a path π through the
netlist of the circuit that passes through the targeted correction
term. Note that the delays are not considered in this phase
of the work. Path π is initialized to contain a transition on
the targeted correction term node. This initial single-node path

6

Require: A single node π in the netlist of the circuit
Ensure: A sensitizable path π starting at a primary input and ending at a

primary output
1: while (π does not start at a primary input) do
2: new node candidates = {All transitions that can be prepended to π}
3: Order new node candidates by difficulty of justification.
4: for (each member n′ of new node candidates) do
5: new subpath π′ = prepend n′ to the tail of π
6: if (check-SAT(π′)) then
7: π = π′

8: Exit for loop.
9: end if

10: end for
11: end while
12: while (π does not end at a primary output) do
13: new node candidates = {ALL transitions that can be appended to π}
14: Order new node candidates by difficulty of propagation.
15: for (each member n′ of new node candidates) do
16: new subpath π′ = append n′ to the head of π
17: if (check-SAT(π′)) then
18: π = π′

19: Exit for loop.
20: end if
21: end for
22: end while

ALGORITHM 1: Extracting a hard to trigger sensitizable path passing
through a specific node.

π is then extended incrementally backwards until reaching
the primary inputs, and extended incrementally forward until
reaching the primary outputs. The path selection algorithm is
given in Alg. 1. Starting from the first transition on the current
path π, we repeatedly try to extend the path back towards the
PIs by prepending one new transition to the path. To select
such a transition, the algorithm creates a list of candidate
transitions that can be prepended to the path, which is sorted
according to the difficulty of creating the necessary conditions
to justify the transition. Whenever a node is prepended to π to
create a candidate path π′, the sensitizability of π′ is checked
by calling check-SAT function. In this function SAT-based
techniques [46] are used to check sensitizability of the path
If the SAT solver returns SAT, then path π′ is known to be
a subpath of a sensitizable path from a primary input to a
primary output. If this newly added tail node is not a primary
input, then the algorithm will again try to extend it backwards.

The forward propagation part is similar to the aforementioned
backward propagation, except that it adds nodes to the head of
the path until reaching a primary output. At each step of the
algorithm, a list of candidates is again formed. In this case,
they are ordered according to difficulty of propagation instead
of difficulty of justification. Each time a new candidate path
is created by adding a candidate node to the existing path, a
SAT check is again performed to ensure that the nodes are
only added to π if it remains sensitizable.

B. Delay Distribution Phase

Once paths are selected, the delay of them must be increased
so that the total path delays exceed the clock period and errors
occur when the paths are sensitized. Choosing where to add
delay on the paths must be done carefully, because the gates
along the chosen paths are also part of many other intersecting
or overlapping paths. Any delay added to the chosen paths
therefore may cause errors even when the chosen paths are

not sensitized. Genetic algorithm is used to smartly decide the
delay of each gate along with some constraints to restrict the
allowed solution space, and a fitness function for evaluating
solutions.

Total Path Delay Constraint: Assume each of the chosen
paths π includes n gates and target path delay is D. This
constraint specifies that the sum of assigned delays along the
path is equal to the target path delay D. To cause an error, D
must exceed the period 4 .

D =

n∑
i=0

di (1)

Gate Delay Constraint: Assume d′i represents the nominal
delay of the ith gate on the chosen path π, and si represents
the slack metric associated with the same gate. Each slack
parameter si describes how much delay can be added to the
corresponding gate without causing the path to exceed the
period 4 . The slack for each gate is computed as a function
of the nominal delay of the gate, data dependency, and the
clock period [48], [49]. Because the targeted path delay D does
exceed the period 4 , gate delays are allowed to exceed their
computed slack. The following equation shows this constraint
where c is a constant.

d′i + si − c ≤ di ≤ d′i + si + c (2)

Fitness Function: The cost function consists of two parts; i)
the faults cancel each others’ effect, i.e., the faults on targeted
correction term in two functions G1 and G3 happen at the same
time and cancel the effect of each other so that the functionality
of the design is not altered, and ii) the design does not fulfill
the uniformity property anymore. To cover both cases in our
final cost function we define it as the following equation in
where the first term corresponds to case (i) and the second
term corresponds to case (ii). Our goal is to minimize this cost
function.

CostF (d1, ..., dn) = ErrorRatedesign + 1/ErrorRateG1 and G3

(3)
We use random simulation to evaluate the cost of any delay
assignment. When the genetic algorithm in Matlab [47] needs
to evaluate the cost of a particular delay assignment, it does
so by executing a timing simulator. The timing simulator, in
our case ModelSim, applies test vectors to the circuit-under-
evaluation and a golden copy of the circuit and compares the
respective outputs to count the number of errors.

VI. ASIC PRACTICAL RESULTS

In this section we describe how we have designed and
implemented first ASIC prototypes incorporating such a
malicious design. We then verify that the resulting chips are
indeed resistant against side-channel attacks when the Trojan
is not triggered and that this resistance can be nullified when
triggering it.

Section ?? demonstrated by practical experiments that the
proposed hardware Trojan and the presented implementation
techniques are valid on FPGA-based platforms. Here, we
aim to provide a similar case study, but with respect to

7

ASIC platforms. In this regard we carried out the described
design stages and implemented the trojanized PRESENT
threshold implementation circuit in two different process
technologies,90 nm and 65 nm low power CMOS. Both ASICs,
which can be seen in Figure 3, were developed using an
identical design procedure, including the usage of low, high
and standard threshold voltage cells, and were manufactured
by the same foundry.

(a) Layout schematic 65 nm ASIC (b) Layout schematic90 nm ASIC

(c) Photo of packaged 90 nm ASIC (d) Microscope photo 90 nm ASIC

FIGURE 3: Layout schematic and photos of the ASIC prototypes.

The size of both chips is 2mm x 2mm. The side-channel
resistant PRESENT TI cores containing the parametric SCA
Trojans have been placed and routed in clearly delimited
rectangular areas, which are marked in red color with a white
cross in both layout schematics 3(a) and 3(b), taken from the
Synopsys IC Compiler (Version 2016.12) software.

We made use of the malicious PRESENT TI S-Box that has
been introduced in the previous sections and embedded it in a
design with full encryption functionality shown in Figure ??.

Synthesizing the unaltered threshold implementation of the
PRESENT S-Box (i.e., without the inserted Trojan) in the
90 nm and 65 nm target libraries revealed that the design could
potentially meet clock frequencies in the GHz range, even when
operated under worst case operating conditions (i.e., low supply
voltage, high temperature). Unfortunately, no digital IO cells
were available in our target technologies that could reliably
propagate such a high-frequency clock into the circuit. Thus,
when inserting the Trojan in the proposed way, i.e., by subtle
manipulations at the sub-transistor level, and keeping period
3 small and stealthy, it could never be triggered, due to the

restrictions of the IO cells and the extremely high performance
of the circuit in the target technologies.

This observation already shows that implementing and testing
such a design on an ASIC is more challenging than on an FPGA,
due to the much higher performance of ASICs. In this regard

we have to conclude that an ultra-lightweight block cipher
implementation like the serialized PRESENT, implemented in
an advanced CMOS technology with small propagation delays,
may not be the optimal choice for integrating such a Trojan
on an ASIC in the most stealthy way. Yet, to keep the results
comparable to those in [50], we stick to this example and find
a workaround for the IO restriction.

Another difficulty when developing ASIC prototypes is
the extensive amount of time and monetary resources that
have to be invested. Thus, it is desirable to obtain a fully
functioning prototype in the first attempt when designing a
test chip. However, this is particularly difficult to achieve
when the functionality of the design depends highly on the
exact timing of certain signal paths in such a way that even
small deviations from the predicted behavior can invalidate
crucial assumptions. In such a case the designer has to trust
its foundry that the characterized timing information included
in the standard cell libraries and simulation models perfectly
reflects the reality – which is hardly ever possible due to
process variations. Thus, even commercial IC design houses
often require multiple generations of prototypes that need to be
characterized and adapted between each iteration to finally end
up with a marketable end-user product. Unlike FPGA platforms
where a new HDL design can be synthesized and implemented
within a few minutes and without any additional cost, which
allows for trial & error approaches, an IC implementation
requires at least several months per tape out as well as a
significant amount of money, even when sharing a wafer
between multiple projects. Thus, for our case study, in order
to not require multiple IC manufacturing iterations, but rather
obtain a working prototype in the first attempt, we chose to limit
the potential sources of error at the cost of sacrificing a part of
the potential stealthiness of the Trojan. In particular, we chose
to realize the delay which needs to be distributed among the
selected paths partially by so-called delay gates3 and optimize
for a broad frequency range that triggers the Trojan while the
PRESENT core still encrypts correctly (i.e., period 3). A
delay gate does not have any logical functionality but simply
propagates its input signal with a certain propagation delay
to its output. Clearly, inserting delay gates into the masked
S-Box makes the Trojan less stealthy than sub-transistor level
modifications. The same is true for a significant reduction
of the overall operating frequency of the circuit as it can
be observed in the results presented in the following (this
reduction is neccessary due to the restrictions of the IO cells).
However, we would like to stress that this case study is simply
proving the conceptual soundness of the approach, in the sense
that inserting this delay-based Trojan makes a side-channel
resistant implementation vulnerable when increasing the clock
frequency beyond a certain point. It is planned to demonstrate
the stealthiness of the Trojan on ASIC platforms in further case
studies. In many cases, for example targeting more complex
non-linear functions (like the AES S-Box) or less advanced
CMOS technologies (implying larger delays), such a use of

3Those gates were required since selecting even the slowest cells (high
threshold voltage, low drive strength) could not add enough delay in order to
make the Trojan triggerable through the IO cells.

8

Technology node Area w/o Trojan Area w/ Trojan Overhead
65 nm 4988.5 GE 5006.5 GE +0.36%
90 nm 4807.8 GE 4825.8 GE +0.37%

TABLE I: Area comparison (post-layout) of PRESENT TI imple-
mentation with and without inserted Trojan (realized by delay gates).

Status 65 nm ASIC 90 nm ASIC
1 f ≤ 33 MHz f ≤ 56 MHz
2 33 MHz < f ≤ 38 MHz 56 MHz < f ≤ 61 MHz
3 38 MHz < f ≤ appr. 1 GHz 61 MHz < f ≤ appr. 1 GHz
4 appr. 1 GHz < f appr. 1 GHz < f

TABLE II: Frequency ranges for the different design states.

additional delay gates will not be required since the critical
path of the design actually restricts the maximum operating
frequency of the design (and not the limitations of the IO cells).
Again, we chose the PRESENT threshold implementation as a
case study here to keep the results comparable to [50]. And
even in our case, where we particularly aimed for a broad range
of period 3 , the overhead in terms of area is very small, even
less than half a percent as apparent from Table I. The range of
clock frequencies that cause a certain state of the trojanized
design can be seen in Table II. As described before, state 3
has the broadest frequency range and can easily be targeted by
setting the clock frequency above 38 MHz for the 65 nm ASIC
and 56 MHz for the 90 nm ASIC. The upper limit where the
output of the circuit becomes faulty is an approximation, since
it could not be determined experimentally due to the limitation
of the IO cells.

A. Measurement Setup

In order to perform the SCA evaluations on the ASIC
prototypes we built a simple custom measurement board.
Since the ASICs have been packaged in JLCC-44 package
(see Figure 3(c)), the custom board provides a corresponding
PLCC-44 socket as well as connectors for a BASYS-3
FPGA board (containing an Artix-7 FPGA) to control the
communication between PC and the ASIC. We measured the
power consumption of the ASICs in the Vdd path by means
of a digital sampling oscilloscope at a fixed sampling rate of
200 samples per clock cycle. Since the operating frequency
varies between the different scenarios (Trojan triggered or
not triggered), fixing the number of samples per clock cycle
(instead of per time period) is the most fair evaluation method.

B. SCA Results

We evaluate the SCA resistance of our designs in three
different settings using a non-specific t-test (fixed versus
random) [51], [52] to examine the existence of detectable
leakage. First, to validate the correct functionality of the setup,
we start with a non-specific t-test when the PRNG of the
target design (used to share the plaintext for the TI PRESENT
encryption) is turned off, i.e., generating always zero instead
of random numbers. Afterwards, we activate the PRNG and
operate the design at low frequency in order to not activate the
Trojan. Then, when the PRNG is still running we increase the
clock frequency in order to activate the Trojan. In the latter
case we also conduct key-recovery attacks.

1) Results on 90 nm ASIC: We first collected 1,000,000
traces with PRNG switched off when the design is operated
at 25 MHz, i.e., the Trojan is not triggered. We followed the
concept given in [52] for the collection of traces belonging to
fixed and random inputs. Figure 4 shows the corresponding
t-test results.

As expected a significant amount of detectable leakage can
be observed in all moments, confirming the validity of the
setup and the developed evaluation tools.

To repeat the same process when the PRNG is turned on,
i.e., the masks for initial sharing of the plaintext are randomly
chosen and uniformly distributed, we collected 50,000,000
traces for non-specific t-test evaluations. In this case, the device
still operates at 25 MHz, i.e., the Trojan is not triggered. The
corresponding results are shown in Figure 5.

It can be seen that no leakage is detected in any of the
three statistical moments after 50,000,000 traces. However,
when observing the progress of the maximum absolute t-value
in the second-order moment over the number of traces one
may notice that the 4.5 threshold is occasionally exceeded. We
should emphasize here that the underlying TI construction is a
first-order masking, which can provide provable security against
first-order SCA attacks. However, higher-order attacks (in this
case second-order attacks already) are expected to exploit the
leakage, but they are sensitive to the noise level [53] since
accurately estimating higher-order statistical moments requires
huge amounts of samples compared to lower-order moments.
Thus, the second-order leakage is not unexpected, but the noise
level seems too large to reliably detect (or exploit) this leakage.

As the last step, the same scenario is repeated when the
clock frequency is increased to 85 MHz, where the design is
in the 3 period, i.e., with correct functionality and without
uniformity. Similar to the previous experiment, we collected
50,000,000 traces for a non-specific t-test, whose results are
shown in Figure 6.

As shown by the graphics, there is detectable leakage through
the first and second statistical moment but with lower t-statistics
compared to the case with PRNG off. Therefore, we also have
to examine the feasibility of key recovery attacks. To this end,
we made use of those collected traces which are associated
with random inputs, i.e., around 25,000,000 traces of the last
non-specific t-test. We conducted several different CPA and
DPA attacks considering intermediate values of the underlying
PRESENT encryption function. The most successful attack
was recognized as classical DPA attack [4] targeting a key
nibble by predicting an S-Box output bit at the first round of
the encryption. As an example, Figure 7 presents an exemplary
corresponding result.

2) Results on 65 nm ASIC: After we have seen that the
Trojan indeed achieves what it has been designed for on the
90 nm ASIC, we repeat the same kind of experiments on the
65 nm chip. At first, the results after 1,000,000 traces with the
deactivated Trojan (25 MHz) and the switched off PRNG can
be seen in Figure 8.

As before, detectable leakage is visible in all three statistical
moments, but its magnitude is significantly smaller than on the
90 nm ASIC, indicating a lower signal-to-noise ratio. Thus, for
the next step with PRNG on we measured more traces than

9

0 500 1000 1500 2000 2500 3000 3500 4000

Time Samples

-400

-200

0

200

t-
st

at
is

tic
s

0 10 20 30 40 50 60 70 80 90 100

No. of Traces 103

0

100

200

300

400

t-
st

at
is

tic
s

0 500 1000 1500 2000 2500 3000 3500 4000

Time Samples

-30

-20

-10

0

10

20

t-
st

at
is

tic
s

0 10 20 30 40 50 60 70 80 90 100

No. of Traces 103

0

10

20

30

t-
st

at
is

tic
s

0 500 1000 1500 2000 2500 3000 3500 4000

Time Samples

-10

-5

0

5

10

15

t-
st

at
is

tic
s

0 10 20 30 40 50 60 70 80 90 100

No. of Traces 103

0

5

10

15

t-
st

at
is

tic
s

FIGURE 4: 90 nm ASIC, PRNG off, clock frequency 25 MHz (trojan not triggered), t-test results with 1 million traces (left), absolute
maximum t-value over the number of traces (right).

0 500 1000 1500 2000 2500 3000 3500 4000

Time Samples

-5

0

5

t-
st

at
is

tic
s

0 10 20 30 40 50

No. of Traces 106

0

1

2

3

4

5

t-
st

at
is

tic
s

0 500 1000 1500 2000 2500 3000 3500 4000

Time Samples

-5

0

5

t-
st

at
is

tic
s

0 10 20 30 40 50

No. of Traces 106

0

1

2

3

4

5

t-
st

at
is

tic
s

0 500 1000 1500 2000 2500 3000 3500 4000

Time Samples

-5

0

5

t-
st

at
is

tic
s

0 10 20 30 40 50

No. of Traces 106

0

1

2

3

4

5

t-
st

at
is

tic
s

FIGURE 5: 90 nm ASIC, PRNG on, clock frequency 25 MHz (trojan not triggered), t-test results with 50 million traces (left), absolute
maximum t-value over the number of traces (right).

10

0 500 1000 1500 2000 2500 3000 3500 4000

Time Samples

-10

0

10

t-
st

at
is

tic
s

0 10 20 30 40 50

No. of Traces 106

5

10

15

t-
st

at
is

tic
s

0 500 1000 1500 2000 2500 3000 3500 4000

Time Samples

-10

-5

0

5

10

t-
st

at
is

tic
s

0 10 20 30 40 50

No. of Traces 106

2

4

6

8

10

t-
st

at
is

tic
s

0 500 1000 1500 2000 2500 3000 3500 4000

Time Samples

-5

0

5

t-
st

at
is

tic
s

0 10 20 30 40 50

No. of Traces 106

2

3

4

5

t-
st

at
is

tic
s

FIGURE 6: 90 nm ASIC, PRNG on, clock frequency 85 MHz (trojan triggered), t-test results with 50 million traces (left), absolute maximum
t-value over the number of traces (right).

0 5 10 15 20 25

No. of Traces 106

1

2

3

C
or

re
la

tio
n

co
ef

f.
 1

0-3

2000 2200 2400 2600 2800

Time Samples

-1

-0.5

0

0.5

1

C
or

re
la

tio
n

co
ef

f.
 1

0-3

FIGURE 7: 90 nm ASIC, PRNG on, clock frequency 85 MHz (trojan triggered), CPA results targeting a key nibble based on an S-Box output
bit with 25 million traces (right), absolute maximum correlation coefficient over the number of traces (left).

before, namely 80,000,000. The results in Figure 9 show that
with PRNG on and the Trojan not triggered at 25 MHz clock,
there is no detectable leakage in any moment.

When measuring at 50 MHz, however, i.e., triggering the
Trojan, significant leakage can be detected in all moments, as
apparent in Figure 10.

The successful CPA in 11 targeting a key nibble based on
an S-Box output bit using 40,000,000 traces confirms that the
leakage is indeed exploitable.

VII. CONCLUSIONS

We show how a parametric hardware Trojan with very
low overhead can be inserted into SCA-resistant designs. The
presented Trojan is capable of being integrated into both ASIC
and FPGA platforms. This kind of parametric Trojan is very
hard to be detected, since it bears the potential to be inserted
without the addition or removal of any logic into or from the

target design. Thus, even in a white-box scenario the Trojan
remains stealthy and is unlikely to be detected by an evaluation
lab.

The underlying concept is to lengthen certain paths of a
combinatorial logic realizing a non-linear function under the
foundations of threshold implementation, in such a way that
by violating their delay (i.e., by running the device at a high
frequency) the uniformity property of the utilized masking
scheme is not fulfilled anymore. Our case study based on
two ASIC prototypes, while admittedly suffering from some
shortcomings, shows clearly that increasing the clock frequency
triggers the malicious threshold implementation design to start
leaking exploitable information through side channels. Hence,
the Trojan adversary can activate the Trojan and make use
of the exploitable leakage, while the design can pass SCA
evaluations when the Trojan is not triggered. To the best of
our knowledge, compared to the previous works in the areas

11

0 500 1000 1500 2000 2500 3000 3500 4000

Time Samples

-50

0

50

t-
st

at
is

tic
s

0 10 20 30 40 50 60 70 80 90 100

No. of Traces 103

0

50

100

t-
st

at
is

tic
s

0 500 1000 1500 2000 2500 3000 3500 4000

Time Samples

-10

0

10

20

t-
st

at
is

tic
s

0 10 20 30 40 50 60 70 80 90 100

No. of Traces 103

0

5

10

15

20

t-
st

at
is

tic
s

0 500 1000 1500 2000 2500 3000 3500 4000

Time Samples

-5

0

5

t-
st

at
is

tic
s

0 10 20 30 40 50 60 70 80 90 100

No. of Traces 103

0

2

4

6

t-
st

at
is

tic
s

FIGURE 8: 65 nm ASIC, PRNG off, clock frequency 25 MHz (Trojan not triggered), t-test results with 1 million traces (left), absolute
maximum t-value over the number of traces (right).

of side-channel hardware Trojans, our construction is the only
one which is applied on a first-order provably-secure SCA
countermeasure, and is parametric with very low (or even no)
overhead.

In fact, by decreasing the supply voltage the same effect
can be seen. As a message of this paper, overclocking and – at
the same time – power supply reduction should be internally
monitored to avoid such an SCA-based Trojan being activated.
Related to this topic we should refer to [54], where the
difficulties of embedding a “clock frequency monitor” in
presence of supply voltage changes are shown.

ACKNOWLEDGMENTS

The work described in this paper has been supported in
part by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy
- EXC 2092 CASA - 390781972 and through the project
271752544 “NaSCA: Nano-Scale Side-Channel Analysis”.

REFERENCES

[1] L. Lin, W. Burleson, and C. Paar, “MOLES: Malicious off-chip leakage
enabled by side-channels,” in ICCAD 2009. ACM, 2009, pp. 117–122.

[2] L. Lin, M. Kasper, T. Güneysu, C. Paar, and W. Burleson, “Trojan
Side-Channels: Lightweight Hardware Trojans through Side-Channel
Engineering,” in CHES 2009, ser. Lecture Notes in Computer Science,
vol. 5747. Springer, 2009, pp. 382–395.

[3] P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems,” in CRYPTO 1996, ser. Lecture Notes
in Computer Science, vol. 1109. Springer, 1996, pp. 104–113.

[4] P. C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in
CRYPTO 1999, ser. Lecture Notes in Computer Science, vol. 1666.
Springer, 1999, pp. 388–397.

[5] M. Kasper, A. Moradi, G. T. Becker, O. Mischke, T. Güneysu, C. Paar,
and W. Burleson, “Side channels as building blocks,” J. Cryptographic
Engineering, vol. 2, no. 3, pp. 143–159, 2012.

[6] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy
Dopant-Level Hardware Trojans,” in CHES 2013, ser. Lecture Notes in
Computer Science, vol. 8086. Springer, 2013, pp. 197–214.

[7] T. Popp, M. Kirschbaum, T. Zefferer, and S. Mangard, “Evaluation of
the Masked Logic Style MDPL on a Prototype Chip,” in CHES 2007,
ser. Lecture Notes in Computer Science, vol. 4727. Springer, 2007, pp.
81–94.

[8] A. Moradi, M. Kirschbaum, T. Eisenbarth, and C. Paar, “Masked
Dual-Rail Precharge Logic Encounters State-of-the-Art Power Analysis
Methods,” IEEE Trans. VLSI Syst., vol. 20, no. 9, pp. 1578–1589, 2012.

[9] K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester, “A2: Analog
malicious hardware,” in Security and Privacy (SP), 2016 IEEE Symposium
on. IEEE, 2016, pp. 18–37.

[10] Y. Hou, H. He, K. Shamsi, Y. Jin, D. Wu, and H. Wu, “R2d2: Runtime
reassurance and detection of a2 trojan,” in 2018 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST). IEEE,
2018, pp. 195–200.

[11] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B.
Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An Ultra-Lightweight
Block Cipher,” in CHES 2007, ser. Lecture Notes in Computer Science,
vol. 4727. Springer, 2007, pp. 450–466.

[12] R. S. Chakraborty, S. Narasimhan, and S. Bhunia, “Hardware Trojan:
Threats and emerging solutions,” in HLDVT 2009. IEEE Computer
Society, 2009, pp. 166–171.

[13] Y. Jin and Y. Makris, “Hardware Trojan Detection Using Path Delay
Fingerprint,” in HOST 2008. IEEE Computer Society, 2008, pp. 51–57.

[14] X. Wang, H. Salmani, M. Tehranipoor, and J. F. Plusquellic, “Hardware
Trojan Detection and Isolation Using Current Integration and Localized
Current Analysis,” in DFT 2008. IEEE Computer Society, 2008, pp.
87–95.

[15] S. Ghandali, G. T. Becker, D. Holcomb, and C. Paar, “A Design
Methodology for Stealthy Parametric Trojans and Its Application to
Bug Attacks,” in CHES 2016, ser. Lecture Notes in Computer Science,
vol. 9813. Springer, 2016, pp. 625–647.

[16] E. Biham, Y. Carmeli, and A. Shamir, “Bug Attacks,” in CRYPTO 2008,

12

0 500 1000 1500 2000 2500 3000 3500 4000

Time Samples

-5

0

5
t-

st
at

is
tic

s

0 10 20 30 40 50 60 70 80

No. of Traces 106

0

1

2

3

4

5

t-
st

at
is

tic
s

0 500 1000 1500 2000 2500 3000 3500 4000

Time Samples

-5

0

5

t-
st

at
is

tic
s

0 10 20 30 40 50 60 70 80

No. of Traces 106

0

1

2

3

4

5

t-
st

at
is

tic
s

0 500 1000 1500 2000 2500 3000 3500 4000

Time Samples

-5

0

5

t-
st

at
is

tic
s

0 10 20 30 40 50 60 70 80

No. of Traces 106

0

1

2

3

4

5

t-
st

at
is

tic
s

FIGURE 9: 65 nm ASIC, PRNG on, clock frequency 25 MHz (Trojan not triggered), t-test results with 80 million traces (left), absolute
maximum t-value over the number of traces (right).

0 500 1000 1500 2000 2500 3000 3500 4000

Time Samples

-15

-10

-5

0

5

10

t-
st

at
is

tic
s

0 10 20 30 40 50 60 70 80

No. of Traces 106

0

5

10

15

t-
st

at
is

tic
s

0 500 1000 1500 2000 2500 3000 3500 4000

Time Samples

-20

-10

0

10

20

t-
st

at
is

tic
s

0 10 20 30 40 50 60 70 80

No. of Traces 106

0

5

10

15

20

t-
st

at
is

tic
s

0 500 1000 1500 2000 2500 3000 3500 4000

Time Samples

-10

-5

0

5

10

15

t-
st

at
is

tic
s

0 10 20 30 40 50 60 70 80

No. of Traces 106

0

5

10

15

t-
st

at
is

tic
s

FIGURE 10: 65 nm ASIC, PRNG on, clock frequency 50 MHz (Trojan triggered), t-test results with 80 million traces (left), absolute maximum
t-value over the number of traces (right).

13

0 5 10 15 20 25 30 35 40

No. of Traces 106

1

2

3
C

or
re

la
tio

n
co

ef
f.

 1
0-3

2500 2525 2550 2575 2600 2625 2650

Time Samples

-4

-2

0

2

4

6

C
or

re
la

tio
n

co
ef

f.
 1

0-4

FIGURE 11: 65 nm ASIC, PRNG on, clock frequency 50 MHz (trojan triggered), CPA results targeting a key nibble based on an S-Box
output bit with 40 million traces (right), absolute maximum correlation coefficient over the number of traces (left).

ser. Lecture Notes in Computer Science, vol. 5157. Springer, 2008, pp.
221–240.

[17] ——, “Bug attacks,” Journal of Cryptology, vol. 29, no. 4, pp. 775–805,
2016.

[18] E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen, “A Side-Channel
Analysis Resistant Description of the AES S-Box,” in FSE 2005, ser.
Lecture Notes in Computer Science, vol. 3557. Springer, 2005, pp.
413–423.

[19] S. Mangard, N. Pramstaller, and E. Oswald, “Successfully Attacking
Masked AES Hardware Implementations,” in CHES 2005, ser. Lecture
Notes in Computer Science, vol. 3659. Springer, 2005, pp. 157–171.

[20] D. Canright and L. Batina, “A Very Compact ”Perfectly Masked” S-Box
for AES,” in ACNS 2008, ser. Lecture Notes in Computer Science, vol.
5037, 2008, pp. 446–459.

[21] A. Moradi, O. Mischke, and T. Eisenbarth, “Correlation-Enhanced Power
Analysis Collision Attack,” in CHES 2010, ser. Lecture Notes in Computer
Science, vol. 6225. Springer, 2010, pp. 125–139.

[22] S. Nikova, V. Rijmen, and M. Schläffer, “Secure Hardware Implementa-
tion of Nonlinear Functions in the Presence of Glitches,” J. Cryptology,
vol. 24, no. 2, pp. 292–321, 2011.

[23] C. Carlet, J. Danger, S. Guilley, and H. Maghrebi, “Leakage Squeezing
of Order Two,” in INDOCRYPT 2012, ser. Lecture Notes in Computer
Science, vol. 7668. Springer, 2012, pp. 120–139.

[24] H. Maghrebi, S. Guilley, and J. Danger, “Leakage Squeezing Counter-
measure against High-Order Attacks,” in WISTP 2011, ser. Lecture Notes
in Computer Science, vol. 6633. Springer, 2011, pp. 208–223.

[25] B. Bilgin, S. Nikova, V. Nikov, V. Rijmen, N. Tokareva, and V. Vitkup,
“Threshold Implementations of Small S-boxes,” Cryptography and
Communications, vol. 7, no. 1, pp. 3–33, 2015.

[26] A. Poschmann, A. Moradi, K. Khoo, C. Lim, H. Wang, and S. Ling,
“Side-Channel Resistant Crypto for Less than 2, 300 GE,” J. Cryptology,
vol. 24, no. 2, pp. 322–345, 2011.

[27] B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen, “Higher-
Order Threshold Implementations,” in ASIACRYPT 2014, ser. Lecture
Notes in Computer Science, vol. 8874. Springer, 2014, pp. 326–343.

[28] T. Beyne and B. Bilgin, “Uniform First-Order Threshold Implementations,”
in SAC 2016, ser. Lecture Notes in Computer Science, vol. 10532.
Springer, 2017, pp. 79–98.

[29] B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen, “A More
Efficient AES Threshold Implementation,” in AFRICACRYPT 2014, ser.
Lecture Notes in Computer Science, vol. 8469. Springer, 2014, pp.
267–284.

[30] A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang, “Pushing the
Limits: A Very Compact and a Threshold Implementation of AES,” in
EUROCRYPT 2011, vol. 6632. Springer, 2011, pp. 69–88.

[31] O. Reparaz, B. Bilgin, S. Nikova, B. Gierlichs, and I. Verbauwhede,
“Consolidating Masking Schemes,” in CRYPTO 2015, ser. Lecture Notes
in Computer Science, vol. 9215. Springer, 2015, pp. 764–783.

[32] H. Gross, S. Mangard, and T. Korak, “An Efficient Side-Channel
Protected AES Implementation with Arbitrary Protection Order,” in
CT-RSA 2017, ser. Lecture Notes in Computer Science, vol. 10159.
Springer, 2017, pp. 95–112.

[33] A. Biryukov, C. D. Cannière, A. Braeken, and B. Preneel, “A Toolbox
for Cryptanalysis: Linear and Affine Equivalence Algorithms,” in
EUROCRYPT 2003, ser. Lecture Notes in Computer Science, vol. 2656.
Springer, 2003, pp. 33–50.

[34] D. Bozilov, B. Bilgin, and H. A. Sahin, “A Note on 5-bit Quadratic
Permutations’ Classification,” IACR Trans. Symmetric Cryptol., vol. 2017,
no. 1, pp. 398–404, 2017.

[35] A. Moradi and T. Schneider, “Side-Channel Analysis Protection and
Low-Latency in Action - - Case Study of PRINCE and Midori,” in

ASIACRYPT 2016, ser. Lecture Notes in Computer Science, vol. 10031,
2016, pp. 517–547.

[36] A. Moradi and A. Wild, “Assessment of Hiding the Higher-Order
Leakages in Hardware - What Are the Achievements Versus Overheads?”
in CHES 2015, ser. Lecture Notes in Computer Science, vol. 9293.
Springer, 2015, pp. 453–474.

[37] P. Sasdrich, A. Moradi, and T. Güneysu, “Affine Equivalence and Its
Application to Tightening Threshold Implementations,” in SAC 2015,
ser. Lecture Notes in Computer Science, vol. 9566. Springer, 2015, pp.
263–276.

[38] B. Bilgin, A. Bogdanov, M. Knezevic, F. Mendel, and Q. Wang, “Fides:
Lightweight Authenticated Cipher with Side-Channel Resistance for
Constrained Hardware,” in CHES 2013, ser. Lecture Notes in Computer
Science, vol. 8086. Springer, 2013, pp. 142–158.

[39] B. Bilgin, S. Nikova, V. Nikov, V. Rijmen, and G. Stütz, “Threshold
Implementations of All 3 × 3 and 4 × 4 S-Boxes,” in CHES 2012, ser.
Lecture Notes in Computer Science, vol. 7428. Springer, 2012, pp.
76–91.

[40] B. Bilgin, J. Daemen, V. Nikov, S. Nikova, V. Rijmen, and G. V. Assche,
“Efficient and First-Order DPA Resistant Implementations of Keccak,”
in CARDIS 2013, ser. Lecture Notes in Computer Science, vol. 8419.
Springer, 2014, pp. 187–199.

[41] B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen, “Trade-Offs
for Threshold Implementations Illustrated on AES,” IEEE Trans. on CAD
of Integrated Circuits and Systems, vol. 34, no. 7, pp. 1188–1200, 2015.

[42] H. Groß, E. Wenger, C. Dobraunig, and C. Ehrenhöfer, “Suit up! - Made-
to-Measure Hardware Implementations of ASCON,” in DSD 2015. IEEE
Computer Society, 2015, pp. 645–652.

[43] P. Sasdrich, A. Moradi, and T. Güneysu, “Hiding Higher-Order Side-
Channel Leakage - Randomizing Cryptographic Implementations in
Reconfigurable Hardware,” in CT-RSA 2017, ser. Lecture Notes in
Computer Science, vol. 10159. Springer, 2017, pp. 131–146.

[44] G. L. Smith, “Model for Delay Faults Based upon Paths,” in International
Test Conference 1985. IEEE Computer Society, 1985, pp. 342–351.

[45] P. Gupta, A. B. Kahng, P. Sharma, and D. Sylvester, “Gate-length biasing
for runtime-leakage control,” IEEE Trans. on CAD of Integrated Circuits
and Systems, vol. 25, no. 8, pp. 1475–1485, 2006.

[46] S. Eggersglüß, R. Wille, and R. Drechsler, “Improved sat-based atpg:
More constraints, better compaction,” in Proceedings of the international
conference on computer-aided design. IEEE Press, 2013, pp. 85–90.

[47] “Genetic Algorithm,” http://www.mathworks.com/discovery/
genetic-algorithm.html, [Accessed: 2016-02-01].

[48] S. Ghandali, B. Alizadeh, and Z. Navabi, “Low Power Scheduling in
High-level Synthesis using Dual-Vth Library,” in 16th International
Symposium on Quality Electronic Design (ISQED), 2015, pp. 507–511.

[49] X. Tang, H. Zhou, and P. Banerjee, “Leakage Power Optimization With
Dual-Vth Library In High-Level Synthesis,” in 42nd annual Design
Automation Conference (DAC 2005), 2005, pp. 202–207.

[50] M. Ender, S. Ghandali, A. Moradi, and C. Paar, “The First Thorough
Side-Channel Hardware Trojan,” in ASIACRYPT 2017, ser. Lecture Notes
in Computer Science, vol. 10624. Springer, 2017, pp. 755–780.

[51] G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi, “A testing
methodology for side channel resistance validation,” in NIST non-
invasive attack testing workshop, 2011, http://csrc.nist.gov/news events/
non-invasive-attack-testing-workshop/papers/08 Goodwill.pdf.

[52] T. Schneider and A. Moradi, “Leakage Assessment Methodology - A
Clear Roadmap for Side-Channel Evaluations,” in CHES 2015, ser.
Lecture Notes in Computer Science, vol. 9293. Springer, 2015, pp.
495–513.

[53] E. Prouff, M. Rivain, and R. Bevan, “Statistical Analysis of Second
Order Differential Power Analysis,” IEEE Trans. Computers, vol. 58,
no. 6, pp. 799–811, 2009.

14

http://www.mathworks.com/discovery/genetic-algorithm.html
http://www.mathworks.com/discovery/genetic-algorithm.html
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf

[54] S. Endo, Y. Li, N. Homma, K. Sakiyama, K. Ohta, D. Fujimoto,
M. Nagata, T. Katashita, J. Danger, and T. Aoki, “A Silicon-Level
Countermeasure Against Fault Sensitivity Analysis and Its Evaluation,”
IEEE Trans. VLSI Syst., vol. 23, no. 8, pp. 1429–1438, 2015.

Samaneh Ghandali received the MSc degree in
computer engineering from Shahid Beheshti Uni-
versity, Tehran, Iran, in 2009. Afterwards, till 2015
she worked as a graduate research assistant at the
University of Tehran, Tehran, Iran. She is currently
working toward the PhD degree in computer engineer-
ing under the supervision of Prof. Christof Paar at
the University of Massachusetts, Amherst, USA. Her
current research interest is hardware security with
a special focus on physical security of embedded
systems, hardware Trojans, side-channel analysis

attacks and the corresponding countermeasures.

M.Sc. Thorben Moos received the B.Sc. and
M.Sc. degrees in IT-Security from Ruhr-Universität
Bochum, Germany in 2014 and 2016, respectively.
Currently, he is a Ph.D. student and scientific
research assistant at the chair for Embedded Se-
curity, Horst-Görtz Institute for IT-Security, Ruhr-
Universität Bochum, Germany. His research interests
include physical security of embedded devices with
specialization in nano-scale side-channel analysis and
secure ASIC implementation.

Priv.-Doz. Dr. Amir Moradi received the M.Sc. and
Ph.D. degrees in computer engineering from Sharif
University of Technology, Tehran, Iran, in 2004 and
2008 respectively. Afterwards, till 2015 he worked as
a Post-Doctoral researcher at the chair for Embedded
Security, Ruhr Universität Bochum, Germany. Since
2016, after obtaining the Habilitation degree, he has
become a senior researcher and faculty member at
the faculty of electrical engineering and information
technology at Ruhr University Bochum. His current
research interests include physical security of em-

bedded systems, passive side-channel analysis attacks, and the corresponding
countermeasures. He has published over 85 peer-reviewed journal articles and
conference papers, in both destructive and constructive aspects of side-channel
analysis. He also served as Program Committee Member (and the Chair) of
several security- and cryptography-related conferences and workshops.

Prof. Dr.-Ing. Christof Paar (Fellow, IEEE) re-
ceived his M.Sc. degree from the University of
Siegen and the Ph.D. degree from the Institute for
Experimental Mathematics at the University of Essen,
both in Germany. He holds the Chair for Embedded
Security at Ruhr University Bochum, Germany, and
is Affiliated Professor at the University of Mas-
sachusetts Amherst, USA. He co-founded, with C.
Koc, the Conference on Cryptographic Hardware and
Embedded Systems (CHES). He has over 200 peer-
reviewed publications and is coauthor of the textbook

Understanding Cryptography (New York, NY, USA: Springer-Verlag, 2010).
He is a co-founder of ESCRYPT – Embedded Security, a leading consultancy
firm in applied security that is now part of Bosch. His research interests
include the efficient realizations of cryptography, hardware Trojans, physical
security and security evaluation of real-world systems.

15

	I Introduction
	II Background
	II-A Hardware Trojans
	II-B Threshold Implementations

	III Technique
	IV Application
	IV-A Inserting the Trojan
	IV-A1 ASIC Platforms
	IV-A2 FPGA Platforms

	V ASIC Implementation
	V-A Rare Path Selection Phase
	V-B Delay Distribution Phase

	VI ASIC Practical Results
	VI-A Measurement Setup
	VI-B SCA Results
	VI-B1 Results on 90nm ASIC
	VI-B2 Results on 65nm ASIC

	VII Conclusions
	References
	Biographies
	Samaneh Ghandali
	M.Sc. Thorben Moos
	Priv.-Doz. Dr. Amir Moradi
	Prof. Dr.-Ing. Christof Paar (Fellow, IEEE)

