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Abstract. Trustworthy machine learning allows data privacy and a
robust assessment of the uncertainty of predictions. Methods for quan-
tifying uncertainty in deep learning have recently gained attention,
while federated deep learning allows to utilize distributed data sources
in a privacy-preserving manner. In this paper, we integrate several
approaches for uncertainty quantification in federated deep learning. In
particular, we show that prominent approaches such as MC-dropout and
stochastic weight averaging Gaussian (SWAG) can be extended efficiently
to federated setup. Moreover, we demonstrate that deep ensembles allow
for natural integration in the federated learning framework. Our empir-
ical evaluation confirms that a trustworthy uncertainty quantification
on out-of-distribution data is possible in federated learning with lit-
tle (SWAG) to no (MC-dropout, ensembles) additional communication.
While all methods perform well in our empirical analysis and should
serve as baselines in future developments in this field, deep ensembles
and MC-dropout allow for better uncertainty based identification of out-
of-distribution data and wrong classified data.
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1 Introduction

Deep learning is used in many critical application areas, such as healthcare [44,
47] or autonomous driving [19,29].

However, predictions of deep learning models can be mistaken, especially on
unseen data. When machine learning is applied as a tool, not minding the possi-
ble flaws of the models can be very costly, e.g., for medical diagnosis or nuclear
power plants control decisions. In such critical environments it is important that
a model can quantify the certainty of its predictions. While for classification an
uncertainty score can be derived from the widely used softmax output, it is often
uncalibrated and over-confident or misleading [13].
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To obtain reliable uncertainty estimates, multiple methods for uncertainty
quantification for deep learning models have been proposed [8,10,23,26,28,32,
34]. Bayesian neural networks dating back to Neal [36] offer a natural way
of quantifying uncertainty by marginalizing over the parameter posterior dis-
tribution. Moreover, the induced stochasticity can be used for evaluating the
uncertainty of the prediction in terms of prediction variance [9]. While Neal
[36] introduced the Hamiltonian Monte Carlo method for deriving the posterior,
simultaneously MacKay [31] analyzed methods based on the Laplace approxima-
tion. Both approaches have been further extended for scalability [41,46], however
challenges like the convergence of the Markov chain in the first, and calculating
the Hessian in the second remain. Another line of research uses approximate
variational inference [12,15], where a simpler parametrized distribution is fit to
approximate the true posterior by maximizing the variational lower bound of the
log likelihood, also referred to as evidence lower bound (ELBO). For better scal-
ability practical approximate Bayesian implementations like MC-dropout [10] or
SWAG [32] have been developed, as well as more empirical approaches such as
deep ensembles [28].

With increasing amounts of data, the overhead of quantifying uncertainty can
be challenging when training a neural network. For the efficient training of neu-
ral networks on large-scale distributed datasets, various parallelization methods
have been proposed. On-device, edge, or in-situ processing, has been well stud-
ied in the context of stream processing [11,42] and monitoring functions over
sensor networks [5,7,24]; averaging models have been used in online learning
from distributed data streams [20,22]. For deep learning, training models in-
situ and averaging their parameters on a coordinator node was termed federated
learning [25,33]. Because of its inherent communication-efficiency [19,33] and its
preservation of the privacy of sensitive local data [1,43], it has gained substan-
tial interest in the community [35,48,51], including studies on the convergence
of the distributed system and the quality of the resulting model [2,30,39,50].
While research in federated deep learning is usually focused on achieving a
lower amount of communication, preserving the error rate, and/or preserving
privacy [25,48], quantifying uncertainty in the federated setup is not fully under-
stood, yet.

In their work, Boughorbel et al. [3] propose using uncertainty, measured
as generalization ability of the model, for weighted aggregation in the global
model. Nevertheless, they do not concentrate on the uncertainty quantification
techniques for federated learning.

In this work we extend the use of ensembles in federated deep learning as
well as include two other popular approaches for uncertainty quantification: MC-
dropout and stochastic weight averaging Gaussians (SWAG).

2 Preliminaries

In this section we give a brief overview about approaches to uncertainty quan-
tification, as well as federated deep learning.
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2.1 Uncertainty Quantification in Deep Learning

Let D := {(xi, yi)}i∈[n] be a dataset consisting out of n independent input-
output tuples sampled from the same data generating distribution. A neural
network with parameters θ trained on D forms a model p(Y |x∗, θ) of the condi-
tional probability distribution of the output Y given the input x∗. For making
a prediction one is usually interested in finding the output y with the highest
probability, i.e. argmaxyp(Y = y|x∗, θ)1. One way to assess the uncertainty of
such a prediction is to calculate the Shannon entropy of the predictive distribu-
tion. Let the output variable Y take values in a discrete set with K states, then
the Shannon entropy is given by

H (p (Y |x∗, θ)) = −
K∑

k=1

p (yk|x∗, θ) · log p (yk|x∗, θ) . (1)

The entropy reaches a minimal value of 0 iff one output value has probability 1
and the others probability 0, i.e. when the model has maximal certainty.

Bayesian models incorporate model uncertainty by taking the posterior dis-
tribution p(θ|D) of the parameters θ given the dataset D into account and esti-
mating the expected prediction as

p(y|x∗,D) =
∫

p(y|x∗, θ)p(θ|D)dθ. (2)

Since the posterior distribution for Bayesian neural networks is intractable, dif-
ferent approximation techniques have been proposed. In the following we will
briefly introduce the approaches to uncertainty quantification that we have incor-
porated into a distributed framework in this paper.

Deep Ensembles. The most straightforward and simple approach for estimat-
ing uncertainty in neural networks is based on ensembles. The use of ensemble
techniques in machine learning has been intensively studied. It is known as a
way to improve the performance of weak classifiers in practice, not only for neu-
ral networks but also for other models, e.g. random forests [4]. Neural network
ensembles were further leveraged by Lakshminarayanan et al. [28] to quantify the
uncertainty of neural network predictions. They suggest to train a neural net-
work S-times with different random initializations leading to S different models
with parameter sets θ1, . . . , θS . For the final prediction all the predictions of
every single model are averaged:

p(y|x∗) :=
1
S

S∑

s=1

p(y|x∗, θs). (3)

1 For simplicity we will write p(y|x∗, θ) for p(Y = y|x∗, θ) in the following.
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Next to assessing the uncertainty based on the entropy of p(y|x∗) one can now
also assess uncertainty by calculating the variance between network predictions,
also referred to as predictive variance:

σ2 =
1
S

S∑

s=1

p (y|x∗, θs)
2 − p (y|x∗)2 . (4)

While surprisingly simple, uncertainty estimates from deep ensembles have
shown to be competitive or even superior to the mathematically grounded uncer-
tainty from Bayesian methods [28,38]. Note, that while the implementation is
straightforward, the computational burden is S-times as much as for training a
single model.

Monte Carlo Dropout. Dropout is a regularization method first proposed
by Hinton et al. [16] for reducing overfitting in deep learning by preventing com-
plex co-adaptions of neurons [45]. The term dropout refers to the random deac-
tivation of neurons of a neural network with probability α, called the droprate,
during training time. When dropout is used for regularization it is only applied
during training.

Gal and Ghahramani [10] showed, that if the network is trained with L2-
regularization in addition and nodes are dropped also during inference (with the
same probability as during training) the procedure will become an approximate
Bayesian method. For deriving the final prediction, the probability of an output
given a certain input is estimated multiple times for different sub-nets result-
ing from randomly dropping neurons and averaged output probabilities as in
Eq. (3) and the predictive variance can be estimated as in Eq. (4), where θs now
represents the parameters of the s-th sub-network.

Stochastic Weight Averaging Gaussian. Maddox et al. [32] propose another
approximate Bayesian method, that exploits the trajectory of stochastic gra-
dient decent (SGD). Their method is inspired by Stochastic Weight Averag-
ing (SWA) [17], where starting from a pretrained solution, averaging the net-
work parameters along the trajectory of SGD improves generalization. In SWAG
normal distributions are placed over the parameters, where the mean of each
parameter is calculated during training as in SWA by:

θSWA =
1
T

T∑

i=1

θi, (5)

where T is the number of SWA epochs. To efficiently calculate the covariance
of the parameters, SWAG computes a running average of the second uncentered
moment for each weight:

θ2 =
1
T

T∑

i=1

θ2i . (6)
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After the last training step θ2 and θSWA are combined to form a (in our case
diagonal) covariance matrix over the parameters by

Σdiag = diag(θ2 − θ2SWA). (7)

During inference, the derived parameter distribution N (θSWA, Σdiag) is treated
as an approximate Bayesian posterior, equivalent to p(θ|D) in Eq. (2). The inte-
gral is approximated by a Monte Carlo estimate, i.e. by averaging over samples
from the approximate posterior. In their original work Maddox et al. [32] experi-
mentally showed that SWAG approximates the shape of the true posterior while
being much less computationally expensive than traditional Bayesian methods.

2.2 Federated Deep Learning

In federated deep learning, the goal is to train a global neural network model
fglobal - which is a mapping from the input space to the output space - on m
workers, each worker fi with i ∈ [m] holding a local dataset Di drawn iid from
the same data distribution. For that, each worker trains a local model with the
same network structure as the global model and shares its model parameters
θi with a coordinator. This coordinator averages the model parameters of local
models and redistributes the averaged parameters

θ =
1
m

m∑

i=1

θi (8)

so that the local workers continue training from θ. This process is iterated until
a suitable stopping criterion is met.

The vanilla variant of federated learning averages all local models after a fixed
number of training steps. The amount of communication spent on achieving a
good performing global model is a critical characteristic of federated learning,
since there exists a correlation: Investing more communication is expensive, but it
leads to a better model. To reduce communication, random subsets of models can
be averaged [33] or communication intervals can be adjusted dynamically [19].
To improve model quality, averaging can be replaced by other aggregation tech-
niques, such as the geometric median [40] or the Radon point [21].

In our evaluation vanilla variant of federated learning serves as a baseline
for the other approaches, since none of the special uncertainty quantification
techniques are integrated there. We will refer to this approach as global model—
as uncertainty is measured for the final global model at coordinator.

3 Leveraging Uncertainty in Federated Deep Learning

Given the preliminaries described in Sect. 2, we now leverage the uncertainty
methods into the federated learning setting.
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Fig. 1. Schema for different ways to build ensembles in a federated setup.

3.1 Ensembles in Federated Deep Learning

Different strategies to form an ensemble in a federated training scenario can be
introduced, as illustrated in Fig. 1 and described in the following.

Ensemble of Local Models. A naive way to incorporate deep ensemble based
uncertainty quantification into the federated setup is to consider the workers’
local models as members of an ensemble. In order not to have the same model
at every worker, one does not perform any communication with the coordinator,
which leads to m separately trained models. These trained models fi are used
for the final prediction derived by averaging fi(x∗) and by replacing p(y|x∗, θs)
in Eq. (1) and Eq. (4) by fi(x∗) for deriving the uncertainty measures. Note,
that the idea of federated learning, where the local models benefit from others
without seeing their data, is lost here.

Ensemble of Global Models. Here we describe another straightforward app-
roach where the benefits of federated learning are kept, however, at the cost
of a massive computational overhead. In ensemble of global models each worker
trains S neural networks fi,s, by using different random initialization to start
with at each local model. For each of the S models we conduct the same proce-
dure like in federated learning, increasing the computational effort by S times.
However, because each run is independent of the others, this approach can easily
be parallelized. It is still not practical in a real world setting with multiple com-
putationally weak devices due to the increased computational effort and storage
restrictions. The prediction for a new input x∗ during the evaluation in each
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worker is given by the average over the S models, which results in

ŷ =
1
S

S∑

s=1

fi,s(x∗). (9)

Ensemble Based on Multiple Coordinators. We also investigate ensemble
strategies that are based on employing several coordinators in the federated
training framework. In the first setup, we refer to as fixed assignment (FA) , the
m workers are randomly grouped into A small subgroups, where each subgroup
(a ∈ [A]) contains the same amount of workers. Each subgroup gets its own
coordinator Ca and individually follows the federated learning process. After
the last communication period the final predictions are derived by averaging the
predictions f(x∗; θ̄a), a ∈ [A] of each coordinator model.

Furthermore, we investigate an ensemble based on multiple coordinators with
random association (RA), where each worker is randomly reassigned to one of
the A coordinators Ca after each communication phase.

3.2 MC-Dropout in Federated Deep Learning

We straightforwardly apply federated MC-dropout by transforming each local
network fi into a network where dropout with a droprate of αi ∈ (0, 1) is applied
during training and prediction, c.f. Fig. 2. The chosen droprate is the same for
all workers, i.e. αi = λ, ∀i ∈ [m]. Note that this does not result in a change
of the communication needed compared to the baseline. During inference each
worker samples multiple subnets by randomly dropping neurons and the final
prediction is derived by averaging the predictions of subnets in analogy to the
centralized setting.

Fig. 2. Using dropout in a federated setup.

3.3 SWAG in Federated Deep Learning

We conclude this section by leveraging SWAG to the federated setting as depicted
in Fig. 3. Federated SWAG is implemented by first conducting vanilla federated
training, but with one communication period less. This is followed by one period
where each worker calculates the SWAG estimates of mean θSWA and variance
Σdiag as described in Sect. 2. In the last communication period, each worker
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sends those two vectors (with a dimension each equal to the size of the network
parameters θ) to the coordinator, which averages all mean values and all variance
values and sends the averages back to the workers. Since both, the aggregated
θSWA and aggregated Σdiag, are distributed back, the amount of communication
in this period is doubled. For inference each worker conducts predictions based
on draws from the estimated approximate posterior distribution N (θSWA, Σdiag).

Fig. 3. Baseline and federated SWAG.

4 Empirical Evaluation

We start with a description of the experimental setup. We conducted the experi-
ments on two datasets, MNIST [49], which consists out of black and white images
of size 28×28 of handwritten digits from zero to nine, and CIFAR-10 [27], which
consists out of colored 32×32 images of ten different classes of common things like
cars, cats, or airplanes. We used the standard training and test data split. For the
experiments on MNIST we implemented a simulated distributed environment2,
where code was run on a single GPU, and did not take into account issues of
real distributed systems, like race conditions during communication. The exper-
iments on CIFAR-10 are conducted using the already existing DL-Platform [18],
which enables federated deep learning on a large scale. For both datasets the
hyper-parameters, especially the learning rate, were tuned to maximize vali-
dation set accuracy. The tuning was done separately for each experiment. An
overview of the used experimental settings is given in Appendix A. For the exper-
iments on MNIST we used a simple fully connected network with two hidden
layers with 128 neurons each and stochastic gradient decent as optimizer. Each
experiment was run ten times with random initializations of the network parame-
ters. For CIFAR-10 we used a ResNet18 architecture, and ran the experiment five
times with different random initializations and using dropout for regularization3.
For this, as well as for MC-dropout we applied a dropout-rate of λ = 0.5 for
2 Sourcecode available at: https://github.com/FloLins/Approaches-to-Uncertainty-

Quantification-in-Federated-Deep-Learning.
3 Using dropout for regularization was necessary to reach a reasonable accuracy on

CIFAR in our experiments. For comparison, results for the same setting without
regularization can be found in the appendix in Table 6.

https://github.com/FloLins/Approaches-to-Uncertainty-Quantification-in-Federated-Deep-Learning
https://github.com/FloLins/Approaches-to-Uncertainty-Quantification-in-Federated-Deep-Learning
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both datasets. For the federated setup we use 20 local learners and 1 coordina-
tor. In the case of FA and RA we introduce 4 coordinators, analogously for the
ensemble of global models we train 4 models at each local worker.

To investigate the ability of the different approaches to quantify uncertainty
we measure the ability of the models to distinguish between (i) correctly classified
and missclassified test examples and (ii) out of distribution data (OOD data) and
the original in distribution data. To measure these abilities we first estimate the
Shannon entropy given in Eq. (1) and the predictive variance given in Eq. (4) and
then we calculate the area under the receiver operating curve (AUROC) [14] for
classification based on this quantities. For calculating the AUROC for wrong and
right predictions on the test dataset we sampled an equal amount of correctly and
wrongly classified samples (to avoid class imbalances). We repeat this procedure
three times for statistical accuracy. For models trained on MNIST we used the
KMNIST [6] as OOD data, and for models trained on CIFAR-10— SVHN [37].

Table 1. Performance of ensemble approaches in comparison to vanilla federated train-
ing (denoted as global model).

Approach Accuracy Ent. AUROC Var. AUROC

MNIST (10 runs) with KMNIST as out-of-distribution data

Global model 97.70 ± 0.001 0.909 ± 0.004 –

Ensemble of local models 94.13 ± 0.001 0.899 ± 0.001 0.893 ± 0.001

Ensemble of global models 97.88 ± 0.001 0.927 ± 0.002 0.931 ± 0.002

Ensemble w. mult. coord.-FA 97.03 ± 0.001 0.916 ± 0.002 0.914 ± 0.003

Ensemble w. mult. coord.-RA 97.36 ± 0.004 0.906 ± 0.002 0.878 ± 0.006

MNIST (10 runs) uncertainty for wrongly classified data

Global Model 97.70 ± 0.001 0.968 ± 0.008 –

Ensemble of local models 94.13 ± 0.001 0.934 ± 0.005 0.930 ± 0.006

Ensemble of global models 97.88 ± 0.001 0.969 ± 0.006 0.966 ± 0.006

Ensemble w. mult. coord.-FA 97.03 ± 0.001 0.959 ± 0.007 0.950 ± 0.007

Ensemble w. mult. coord.-RA 97.36 ± 0.004 0.962 ± 0.006 0.945 ± 0.011

CIFAR-10 on ResNet18 (5 runs) with dropout and SVHN as out-of-distribution data

Global model 86.58 ± 0.289 0.924 ± 0.011 –

Ensemble of local models 72.65 ± 0.251 0.679 ± 0.023 0.689 ±0.033

Ensemble of global models 89.00 ± 0.136 0.937 ± 0.009 0.804 ± 0.012

Ensemble w. mult. coord.-FA 83.43 ± 0.449 0.860 ±0.014 0.740 ± 0.012

Ensemble w. mult. coord.-RA 86.72± 0.511 0.920 ± 0.004 0.750 ± 0.026

CIFAR-10 on ResNet18 (5 runs) with dropout, uncertainty for wrongly classified data

Global model with dropout 86.58 ± 0.289 0.888 ± 0.006 –

Ensemble of local models 72.65 ± 0.251 0.788 ±0.006 0.687 ± 0.007

Ensemble of global models 89.00 ± 0.136 0.891 ± 0.008 0.868 ± 0.006

Ensemble w. mult. coord.-FA 83.43 ± 0.449 0.858 ± 0.005 0.815 ± 0.007

Ensemble w. mult. coord.-RA 86.72± 0.511 0.887 ± 0.005 0.861 ± 0.009
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Because each setup differs in the amount of averaged predictions and compu-
tational complexity, we only compare them separately to the global model found
by standard federated deep learning which serves as a baseline.

Ensembles. We report the accuracy and the results for uncertainty based OOD
detection and detection of wrongly classified data for the investigated ensemble
methods in Table 1. The ensemble of local models has a lower accuracy than the
baseline on both datasets, which can be attributed to the fact that each local
model only sees a limited amount of data. Even on the simpler MNIST dataset
no satisfactory results are achieved.

Like in a centralized setting the ensemble of global models, where we used four
global models, increases both accuracy and uncertainty quantification quality,
but at the cost of an increased computational payload. This overhead could
decrease its practical usability in the case that the training is performed on
multiple computationally weak devices. In contrast, just increasing the amount of
coordinators from one to four does not increase the computational complexity of
the approach. A fixed association of workers to coordinators lead to less accurate
results than a random association (compare Ensemble w. mult. coord.-FA to
Ensemble w. mult. coord.-RA in Table 1), which could be explained by the fact
that each coordinator sees more data. We also experimented with randomly
choosing the size of the random subgroups (results not shown), which however
did not lead to significant differences in the results.

Fig. 4. The spread of entropy values for right (green) and wrong (red) predictions of
CIFAR-10. (Color figure online)

In Figs. 4 and 5 we show the uncertainty for wrong and right predictions
for the in distribution test dataset of CIFAR-10. One can see that generally
the highest entropy values are produced by the ensemble of local models but
entropy is high for correct and incorrect predictions. The other models, like
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Fig. 5. The spread of variance values for right (green) and wrong (red) predictions of
CIFAR-10. (Color figure online)

ensemble of global models, show a significantly larger difference in entropy values
for missclassified and correctly classified examples, which is reflected by the
higher AUROC values.

MC-Dropout. The findings for applying dropout in the federated setting are
twofold: First, in our experiments it increases the AUROC based on the entropy
for both datasets when compared to the global model (c.f. Table 2). This behavior
relates to observations in the centralized setting, where MC-dropout is used as
a simple and effective method for uncertainty quantification [10]. Second, for
models trained on CIFAR-10, dropout also improves the test set accuracy when
compared to the global model and is comparable with the accuracy derived
from dropout as a regularization (global model with dropout). Because of the
significant accuracy increase when using dropout during training, one possible
direction for future work could be to investigate if the inherent prevention of
co-adaptation while using dropout is beneficial during weight averaging.

SWAG. We conclude our experimental discussion with analyzing the effects of
federated SWAG on test set accuracy and uncertainty. The results presented in
Table 3 demonstrate that SWAG produces a slightly higher test set accuracy
compared to the global model on both datasets. Further, the AUROC as well
as the box-plot in Fig. 6 shows that the ability to indicate erroneous predictions
based on the entropy is also increased. Because SWAG can be applied to exist-
ing (already trained) models by using the current state as pre-trained solution
the found improvements can easily be archived by applying one communication
period of the SWAG algorithm, i.e. without a lot of computational overhead
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compared to vanialla ferderated learning. Variance based OOD detection as well
as wrong and right prediction distinction (Fig. 7) is always inferior to using the
entropy.

Table 2. Comparison of federated MC-dropout to global model approach.

Approach Accuracy Ent. AUROC Var. AUROC

MNIST (10 runs) with KMNIST as out-of-distribution data

Global model 97.70 ± 0.001 0.909 ± 0.004 –

Federated MC-dropout 96.77 ± 0.001 0.920 ± 0.002 0.871 ± 0.003

MNIST (10 runs) uncertainty for wrong classified data

Global Model 97.70 ± 0.001 0.968 ± 0.008 –

Federated MC-dropout 96.77 ± 0.001 0.948 ± 0.009 0.914 ± 0.013

CIFAR-10 on ResNet18 (5 runs) with SVHN as out-of-distribution data

Global model 77.88 ± 0.279 0.742 ± 0.019 –

Global model with dropout 86.58 ± 0.289 0.924 ± 0.011 –

Federated MC-dropout 86.32 ± 0.253 0.913 ± 0.010 0.714 ± 0.007

CIFAR-10 on ResNet18 (5 runs) uncertainty for wrong classified data

Global Model 77.88 ± 0.279 0.838 ±0.006 –

Global model with dropout 86.58 ± 0.289 0.888 ± 0.006 –

Federated MC-dropout 86.32 ± 0.253 0.880 ± 0.007 0.849 ± 0.008

Table 3. Comparison of federated SWAG to global model approach.

Approach Accuracy Ent. AUROC Var. AUROC

MNIST (10 runs) with KMNIST as out-of-distribution data

Global model 97.70 ± 0.001 0.909 ± 0.004 –

Federated SWAG 98.16 ± 0.001 0.918 ± 0.004 0.893 ± 0.005

MNIST (10 runs) uncertainty for wrong classified data

Global Model 97.70 ± 0.001 0.968 ± 0.008 –

Federated SWAG 98.16 ± 0.001 0.974 ± 0.006 0.969 ± 0.009

CIFAR-10 on ResNet18 (5 runs) with dropout and SVHN as out-of-distribution data

Global model 86.58 ± 0.289 0.924 ± 0.011 –

Fed. SWAG 87.14 ± 0.170 0.924 ± 0.009 0.807 ± 0.025

CIFAR-10 on ResNet18 (5 runs) with dropout, uncertainty for wrong classified data

Global model 86.58 ± 0.289 0.888 ± 0.006 –

Fed. SWAG 87.14 ± 0.170 0.892 ± 0.006 0.856 ± 0.007
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Fig. 6. The spread of entropy values
for right (green) and wrong (red) pre-
dictions of CIFAR-10. (Color figure
online)

Fig. 7. The spread of variance val-
ues for right (green) and wrong (red)
predictions of CIFAR-10. (Color figure
online)

5 Discussion and Conclusion

Due to the crucial relevance of uncertainty in trustworthy real world applications
we investigated how approaches for uncertainty quantification can be applied
in federated deep learning. More precisely we investigated ways to incorporate
deep ensembles, SWAG and MC-dropout into the federated learning setup by
changing network structure, communication protocols and training procedures.
We believe, that the distributed setup provides further opportunities, as well as
challenges for quantification of uncertainty and position our work as a baseline
for possible future approaches.

The empirical results suggest that ensembles of global models and federated
SWAG retain the model quality of standard federated learning while at the same
time improve upon the standard setting in terms of out-of-distribution (OOD)
detection and detection of missclassified test data. The disadvantage of this
approach is that it requires additional computation and storage for each global
model that needs to be computed. One needs to evaluate this requirements for
a real world application, since in applications with computational weak devices
this approach could be infeasible.

Federated SWAG is less computational demanding, while still improving the
prediction accuracy. In terms of prediction accuracy and uncertainty estimation
abilities we found that the federated SWAG reaches values close to the ensemble
of global models. Therefore we recommend the usage of federated SWAG due to
the precise results and the high usability.

Further, the flexibility of the federated learning protocols allows multiple
applications of uncertainty quantification in practice. Ensembles based on mul-
tiple coordinators could be beneficial for federated learning in moving objects,
like mobiles or cars, because our empirical analysis shows that adding additional
coordinators and assigning workers randomly to subgroups does not decrease
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both accuracy and capabilities for uncertainty quantification. Further no modi-
fication of the training algorithm nor network structure are needed to apply this
method. Even adding uncertainty quantification methods to a running system is
possible by using federated SWAG, since the actual state of model can be used
as pre-trained solution.

Concluding, in this work we have empirically shown, that federated deep
learning can benefit from approaches for uncertainty quantification in terms of
accuracy and certainty of prediction while gaining additional design flexibility.
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A Appendix

The configuration for each experimental setup is summarized in Table 4. Fur-
thermore the optimized learning rate for each individual setup is presented in
Table 5.

Table 4. Hyperparameters used during the experiments.

Parameter MNIST CIFAR-10

Epochs per Communication Period 10 0.064

Batch Size 100 16

#Coordinators 4 4

#Workers 20 20

#Communication Periods 10 3125

OOD-Dataset KMNIST SVHN

Weight Decay 1e−5 1e−4

Repetitions for Ensemble of Global
Models

4 4

Optimizer SGD SGD

Loss Cross Entropy Loss Cross Entropy
Loss
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Table 5. Learning rates used during the experiments.

Approach MNIST CIFAR-10

Global Model 0.1 0.01

Global Model w. dropout – 0.1

Ensemble of local models 0.1 0.01

Ensemble of local models w. dropout – 0.1

Ensemble of global models 0.1 0.01

Ensemble of global models w. dropout – 0.1

Ensemble w. mult. coord.-FA 0.1 0.01

Ensemble w. mult. coord.-FA w. dropout – 0.1

Ensemble w. mult. coord.-RA 0.1 0.01

Ensemble w. mult. coord.-RA w. dropout – 0.1

Federated MC-dropout 0.05 0.1

Federated SWAG 0.1 0.01

Fed. SWAG w. dropout – 0.1

Table 6 shows the results of CIFAR-10 when dropout was not applied as
regularization method.

Table 6. Performance of CIFAR-10 without dropout as regularisation .

CIFAR-10 on ResNet18 (5 runs) with SVHN as out-of-distribution data

Approach Accuracy Ent. AUROC Var. AUROC

Global model 77.88 ± 0.279 0.742 ± 0.019 -

Ensemble of local models 66.77 ± 0.564 0.468 ±0.019 0.648 ± 0.031

Ensemble of global models 84.02 ± 0.218 0.776 ± 0.02 0.719 ±0.015

Ensemble w. mult. coord.-FA 73.24 ± 0.791 0.584 ± 0.023 0.631 ± 0.019

Ensemble w. mult. coord.-RA 78.65 ± 0.291 0.760 ± 0.028 0.704 ± 0.024

Federated SWAG 78.72 ± 0.57 0.749 ± 0.03 0.708 ± 0.033

CIFAR-10 on ResNet18 (5 runs)uncertainty for wrong classified data

Global Model 77.88 ± 0.279 0.838 ± 0.006 -

Ensemble of local models 66.77 ± 0.564 0.760 ± 0.004 0.630 ± 0.006

Ensemble of global models 84.02 ± 0.218 0.862 ± 0.004 0.823 ± 0.008

Ensemble w. mult. coord.-FA 73.24 ± 0.791 0.808 ± 0.004 0.742 ± 0.012

Ensemble w. mult. coord.-RA 78.65 ± 0.291 0.847 ± 0.006 0.826 ± 0.006

Federated SWAG 78.72 ± 0.57 0.845 ± 0.007 0.825 ± 0.007
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