
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2021, No. 3, pp. 552–598. DOI:10.46586/tches.v2021.i3.552-598

DL-LA: Deep Learning Leakage Assessment
A modern roadmap for SCA evaluations

Thorben Moos∗ , Felix Wegener∗ and Amir Moradi

Ruhr University Bochum, Horst Görtz Institute for IT Security, Bochum, Germany
firstname.lastname@rub.de

Abstract. In recent years, deep learning has become an attractive ingredient to
side-channel analysis (SCA) due to its potential to improve the success probability
or enhance the performance of certain frequently executed tasks. One task that is
commonly assisted by machine learning techniques is the profiling of a device’s leakage
behavior in order to carry out a template attack. At CHES 2019, deep learning has
also been applied to non-profiled scenarios for the first time, extending its reach
within SCA beyond template attacks. The proposed method, called DDLA, has some
tempting advantages over traditional SCA due to merits inherited from (convolutional)
neural networks. Most notably, it greatly reduces the need for pre-processing steps
when the SCA traces are misaligned or when the leakage is of a multivariate nature.
However, similar to traditional attack scenarios the success of this approach highly
depends on the correct choice of a leakage model and the intermediate value to target.
In this work we explore, for the first time in literature, whether deep learning can
similarly be used as an instrument to advance another crucial (non-profiled) discipline
of SCA which is inherently independent of leakage models and targeted intermediates,
namely leakage assessment. In fact, given the simple classification-based nature
of common leakage assessment techniques, in particular distinguishing two groups
fixed-vs-random or fixed-vs-fixed, it comes as a surprise that machine learning has not
been brought into this context, yet. Our contribution is the development of the first
full leakage assessment methodology based on deep learning. It gives the evaluator the
freedom to not worry about location, alignment and statistical order of the leakages
and easily covers multivariate and horizontal patterns as well. We test our approach
against a number of case studies based on FPGA, ASIC and µC implementations of
the PRESENT block cipher, equipped with state-of-the-art SCA countermeasures.
Our results clearly show that the proposed methodology and network structures are
robust across all case studies and outperform the classical detection approaches (t-test
and χ2-test) in all considered scenarios.
Keywords: Leakage Evaluation · Side-Channel Analysis · Deep Learning

1 Introduction
In an ideal world, side-channel security evaluations would be able to provide a qualitative
and confident answer (pass or fail) to the question whether the device under test (DUT) is
vulnerable to physical attacks or not. However, the past has shown that this expectation
is indeed a utopia. An exhaustive verification of the security of a DUT against all
possible attack vectors is simply infeasible. Instead, the concept of leakage assessment
has been introduced in order to answer a slightly, but explicitly, less informative question.
Namely, whether any kind of input-dependent information can be detected in side-channel
measurements of the device under test. Clearly, in case this question is answered positively,

∗These authors contributed equally to this work.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-10-15 Accepted: 2020-12-15 Published: 2021-07-09

https://doi.org/10.46586/tches.v2021.i3.552-598
https://orcid.org/0000-0003-3809-9803
https://orcid.org/0000-0003-1252-4605
https://orcid.org/0000-0002-4032-7433
mailto:thorben.moos@rub.de, felix.wegener@rub.de, amir.moradi@rub.de
http://creativecommons.org/licenses/by/4.0/

Thorben Moos, Felix Wegener and Amir Moradi 553

no conclusions about the actual vulnerability of the device with respect to key recovery
attacks can be drawn (although it is sometimes interpreted as an indication thereof).
Yet, in case it is answered negatively (and no false negative occurs) the DUT should be
sufficiently secure. In other words, leakage assessment is conceptually capable of providing
the initially desired confidence in at least one of the two cases. This possibility inspired
the quest for appropriate leakage assessment methods in academia and industry.

The most prominent leakage detection approach is certainly distinguishing two groups
of measurements, one for fixed and one for random inputs, by means of the Welch’s
t-test [GJJR11, SM15]. Whenever these two groups are distinguishable with confidence
one can conclude that the device reveals input-dependent information. However, this
method has some severe limitations, especially when more sophisticated types of side-
channel leakage need to be captured. First of all, since each point in time is evaluated
independently, the approach inherently expects that any potential side-channel leakage is of
a univariate nature and, more generally, that the detection of the leakage does not benefit
from a combination of multiple points. Yet, many counterexamples to this assumption can
be observed in reality. Although Schneider et al. [SM15] provide detailed information on
how to perform the t-test at arbitrary order and variate, the performance of the test at
higher variates either quickly runs into feasibility issues or its success depends highly on the
expertise of the evaluator and the prior knowledge about the underlying implementation.
On another note, a misalignment of the leaking samples between the individual traces leads
to a significantly impaired detection as well. Thus, the Welch’s t-test, as it is currently
applied as a test vector leakage assessment (TVLA) methodology, is naturally unsuited
to cover multivariate and horizontal leakages, as well as (heavily) misaligned traces. In
addition to that, it has recently been pointed out that the separation of statistical orders,
which is often seen as a beneficial feature of the t-test when seeking the smallest key
dependent moment for example, may cause false negatives. This can be observed when
masked implementations with (very) low noise levels are analyzed [Sta18, Moo19] or
when the leakage is distributed over multiple statistical moments (as it is common for
hardware masking schemes like Threshold Implementations) [MRSS18, Sta18]. Moradi et
al. [MRSS18] suggested Pearson’s χ2-test as a natural complement to the Welch’s t-test to
aggregate leakages distributed over multiple orders and to analyze the joint information.
By combining the two approaches the risk of false negatives, especially in the previously
described cases, can significantly be reduced. Yet, in the same manner as the t-test, the
χ2-test analyzes the individual points in a leakage trace independently and therefore suffers
from the same shortcomings when it comes to multivariate or horizontal patterns and
misalignments. The core motivation for this work has been to extend the state of the art
in such a way that the latter types of leakage can be covered, using a simple and easy to
apply methodology.

Deep learning has been brought into the context of side-channel analysis mainly in order
to improve the effectiveness of template attacks [HGM+11]. In a template attack the
adversary is in possession of a fully-controlled profiling device, learns the leakage function
of a certain cryptographic operation and subsequently uses the acquired knowledge to
reveal sensitive information on a structurally identical but distinct target device where the
secrets are unknown. Apart from the general suitability of deep learning to build classifiers
for profiled side-channel attacks, it has also been demonstrated that certain features and
structures of the applied neural networks offer valuable advantages over classical template
attacks. For example, it has been shown in [CDP17] that convolutional neural networks
(CNNs) can lead to efficient classifiers even when the available side-channel traces suffer
from a misalignment. Thus, due to their so-called translation invariance property, CNNs
can be utilized to conquer jitter-based countermeasures. Recently, the first non-profiled
deep learning based side-channel attacks have been demonstrated in literature [Tim19].
The proposed method, called DDLA, is based on guessing a part of the key, using it to

554 DL-LA: Deep Learning Leakage Assessment

compute the targeted key-dependent intermediate value, applying a leakage model and
labeling the training data according to its result. Assuming that under the correct key
hypothesis the differences between the classes implied by the leakage model correlate with
the measured leakage traces (and for the incorrect guesses they do not), the impact of
the correct key guess on the training loss and the training accuracy is visible and can
easily be identified. Although, this approach depends on the correct choice of the targeted
intermediate value and the applied leakage model as much as traditional attacks, it offers
some tempting advantages. First of all, in case CNNs are used, the translation invariance
property allows to analyze misaligned traces without any pre-processing. Secondly, when
the leakage is of a multivariate nature or generally distributed over multiple points no
recombination and no prior knowledge about the underlying implementation is required.
Hence, deep learning is a powerful tool for non-profiled scenarios as well.

1.1 Our Contribution
For the first time in literature we evaluate whether deep learning is an eligible strategy for
black box leakage detection. To this end, we have developed an approach that is based on
the concept of supervised learning. We call it deep learning leakage assessment (DL-LA)
in the following. Simply put, we train a neural network with a randomly interleaved
sequence of labeled side-channel measurements that have been acquired while supplying
the DUT with one of two distinct fixed inputs (fixed-vs-fixed). Afterwards, in the validation
phase, the trained network is supplied with unlabeled measurements from both groups and
supposed to correctly classify them. Of course, the training set and the validation set are
disjoint. In case the network succeeds with a higher percentage of correct classifications
than could be achieved by a randomly guessing binary classifier with a non-negligible
probability, it can be concluded that indeed enough information was included in the
training set to distinguish the two groups. In other words, given the percentage of correctly
classified traces and the size of the validation set one can easily calculate a confidence
value, i.e., a probability, that the correct classifications were not just a random statistical
occurrence. In this way it is possible to directly compare the confidence values achieved
by DL-LA with the confidence provided by classical leakage assessment approaches, such
as the Welch’s t-test and Pearson’s χ2-test. Aligning the appearance of DL-LA results to
previous approaches is a valuable characteristic of our methodology and a contribution of
this work.

Classical hypothesis tests rely on clearly defined formulas to estimate their statistics.
DL-LA on the other hand grants a high level of freedom regarding its application due
to the flexible choice of the network that shall be trained as a classifier. However, that
freedom does not come without drawbacks. A complex network with a highly successful
performance as a classifier on a certain set of measurements may not deliver satisfactory
results on another set. Hence, the selection of the network may have a huge impact on the
success of the DL-LA procedure. In such a case, an evaluator may be required to repeat
the evaluation using many different networks to gain a confident result or choose suitable
parameters based on prior knowledge about the underlying implementation. Clearly, both
scenarios are undesirable for an initial analysis. Thus, in order to qualify as a simple and
generic strategy for leakage assessment, it should be possible to select networks which offer
a fairly robust and universal performance. In particular, it is desirable that the leakage
detection capability of a network is as independent of the type of side-channel leakage to
be detected as possible and largely independent of exterior parameters such as the trace
length as well. This approach stands in stark contrast to common applications of deep
learning in the area of physical security evaluations. Usually a network is deliberately
tailored to a specific leakage pattern and measurement set in order to provide the best
possible results. In our case, however, we want to use networks, at least for the initial

Thorben Moos, Felix Wegener and Amir Moradi 555

analysis, that are general enough to deliver appropriate results when facing many different
measurement sets and leakage behaviors. Thus, an important contribution of this work is
the identification of network structures that perform consistently well when faced with
different types of side-channel leakage and characteristics of the traces. After a long process
of evaluating different networks (manually and automated) we have come to the conclusion
that simplicity beats complexity. We evaluate and recommend two different simple network
architectures, 1) a multi-layer perceptron (MLP) and 2) a convolutional neural network
(CNN), the first with a given set of hyper-parameters and the second with a spectrum
of hyper-parameters that proved successful. We are able to show that both networks
provide excellent detection performance in a total of nine different case studies analyzing
three distinct implementation platforms (FPGA, custom ASIC, and ARM Cortex-M0
µC). Each of the case studies features implementations of the PRESENT ultra-lightweight
block cipher with different variations of masking and hiding countermeasures applied. The
classification capability of our networks does not only withstand misaligned and noisy
traces, but is able to deal with univariate and multivariate higher-order leakage as well. In
all nine case studies we compare the success of our method to both the Welch’s t-test and
Pearson’s χ2-test and show that DL-LA outperforms the leakage assessment capabilities
of the classical techniques in all considered scenarios (either by requiring fewer traces for
confident detection or by providing a higher confidence using the same number of traces for
detection1). We also present one scenario where both the univariate and the multivariate
versions of the t-test and the χ2-test fail to detect leaked information with confidence, while
DL-LA still succeeds with only half of the available traces. As an unintended byproduct of
our practical case studies, we provide the most detailed practical comparison between the
Welch’s t-test and Pearson’s χ2-test that has been reported in the literature so far.

The most outstanding advantage of our approach is clearly that the underlying network is
free to combine as many points for the classification of the two groups as necessary. Thus,
even in complex scenarios of purely multivariate or horizontal leakages, the traces can simply
be fed as training data into the network without any trace-specific pre-processing or manual
selection of points. Accordingly, neither a high expertise is demanded from the evaluator,
nor is it required to obtain any prior information about the underlying implementation or
the type of leakage that is expected. We believe that proving distinguishability of two sets of
data by actually building a successful distinguisher is an elegant solution and more intuitive
than the usual statistical arguments. We also compare our neural-network-based classifiers
to multivariate Gaussian models which theoretically could capture distributed leakages as
well. However, based on our experiments we conclude that such template-analysis methods
can not provide the same level of flexibility as machine learning approaches. Compared
to the common univariate distinction tests, DL-LA generally entails a lower risk of false
positives as it provides a single confidence value to assess the distinguishability of the
groups. Traditional point-wise methods would need to normalize their confidence values to
the number of points in the traces to provide a meaningful confidence threshold. However,
this inaccuracy is mostly disregarded in their respective methodologies. Even though,
DL-LA provides only a single confidence value, the approach can still identify the points of
interest in side-channel traces that contain leakage, by performing a Sensitivity Analysis
(SA) on the trained network. Obviously, the average computation time to perform a DL-LA
is significantly higher when compared to simple univariate tests (a comparison is provided
in Section 4). However, as soon as more complex types of side-channel leakage need to be
analyzed, the additional run time quickly pays off, since the effort that otherwise has to be
spent in order to make traditional methods recognize those complex patterns (if possible)
grows even bigger and contains several steps that are hard to automate.

1We explain in Section 3 that in the DL-LA procedure there is a distinction between the required
number of traces for the detection (i.e., the training set) and the required number of traces to carry out
the evaluation (i.e., the sum of the training set and the validation set).

556 DL-LA: Deep Learning Leakage Assessment

1.2 Claims and Non-Claims
In order to avoid any potential confusion regarding our claims, or lack thereof, we explicitly
list the most important statements below:

We do not claim that ...

7 our chosen networks are optimal for leakage detection in general or for any of the
considered case studies in particular. We are certain that there is room for improve-
ment, especially when considering individual cases, as we intentionally optimized for
robustness and simplicity instead of single case performance.

7 our chosen networks necessarily lead to classifiers that outperform the t-test or the
χ2-test for any given side-channel traces.

7 DL-LA is generally superior and should replace established leakage detection tech-
niques.

7 DL-LA generally causes none or fewer false negatives than the classical approaches.

We do claim that ...

3 the chosen networks offer some basic universality and robustness. Their success in all
nine case studies featuring three different implementation platforms (FPGA, ASIC,
µC) is practical evidence for this claim.

3 the chosen networks are able to learn first-order, higher-order, univariate, multivariate
and horizontal leakages without requiring any trace-specific pre-processing or prior
knowledge about the underlying implementation.

3 DL-LA entails a much lower risk of false positives (if the same confidence threshold
is chosen) since it provides one confidence per set of traces instead of one confidence
per time sample in the trace set.

2 Background
In this section we introduce the necessary background with respect to the roots and
state-of-the-art of leakage assessment, as well as deep learning and its applications to
side-channel analysis.

2.1 Leakage Assessment
Ever since the introduction of side-channel attacks in 1999 [KJJ99] the standard approach
for assessing the physical vulnerability of a device has been a more or less exhaustive
verification of its resistance against known attacks while attempting to cover a broad range
of intermediate values and hypothetical leakage models. This approach, however, became
less feasible over the years due to the increasing amount of new attack methods and the
higher complexity of potential leakage models due to the introduction of countermeasures
against physical attacks. Another concern regarding this procedure is that it entails a
significant risk of reporting physical security in favor of the DUT while in reality merely a
certain attack vector was missed in the process (by mistake or because it was unknown
at time of evaluation) that could indeed enable key recovery [SM15]. Hence, the need
for a robust and reliable standard leakage assessment method independent of concrete
attack scenarios, targeted intermediates and hypothetical leakage models grew consistently
over the years. In an attempt to gather and evaluate promising candidates, the National

Thorben Moos, Felix Wegener and Amir Moradi 557

Institute of Standards and Technology (NIST) hosted a "Non-Invasive Attack Testing
Workshop" in 2011. One of the most intriguing proposals at the workshop was the use of the
non-specific Welch’s t-test [GJJR11] for leakage detection. Leakage detection avoids any
dependency on the choice of intermediates and leakage models by focusing on the detection
of leakage only, without paying any attention to the possibility to exploit said leakage for
key recovery. Simply put, the concept is based on supplying the device under test with
different inputs, recording its leakage behavior and evaluating whether a difference can be
observed. Thus, such a method is suitable for black box scenarios and allows certification
of a device’s physical security by third party evaluation labs without the need to test a
multitude of different methods and parameter combinations. Seven years later, after some
shortcomings of the moment-based nature of the t-test had been identified [Sta18], another
popular statistical hypothesis test was proposed for leakage detection purposes, namely
the Pearson’s χ2-test [MRSS18]. Both hypothesis tests, the t-test and the χ2-test, are
applied in the field of statistics in order to answer the question whether two sets of data
are significantly different from each other. To be more precise, the evaluation of the tests
examines the validity of the null hypothesis, which constitutes that both sets of data were
drawn from the same population (i.e., they are indistinguishable) [SM15]. In side-channel
analysis contexts, it is usually evaluated whether two groups of measurements can be
distinguished with confidence. Traditionally, those two groups are acquired by supplying
the DUT either with random (group Q0) or a fixed input (group Q1), selected by coin toss.
Later, it has been demonstrated that the careful choice of two distinct fixed inputs (instead
of maintaining one group for random inputs) usually leads to a lower data complexity for
the distinction [DS16]. We provide the details on how to conduct the Welch’s t-test and
Pearson’s χ2-test below.

Welch’s t-test. We denote two sets of data by Q0 and Q1, their cardinality by n0 and
n1, their respective means by µ0 and µ1 and their standard deviations by s0 and s1. The
t-statistics and the degrees of freedom v can then be computed using the following formulas.

t = µ0 − µ1√
s2

0
n0

+ s2
1

n1

v =

(
s2

0
n0

+ s2
1

n1

)2

(
s2

0
n0

)2

n0−1 +

(
s2

1
n1

)2

n1−1

Afterwards, the confidence p to accept the null hypothesis can be estimated via the Student’s
t probability density function, where Γ(.) denotes the gamma function [SM15, MRSS18].

p = 2
∫ ∞
|t|

f(t, v)dt f(t, v) =
Γ
(

v+1
2
)

√
πvΓ

(
v
2
) (1 + t2

v

)− v+1
2

In practice, for the sake of simplicity, it is common to only evaluate the t-statistics and to
set the confidence threshold for distinguishability to |t| > 4.5. The statistical background
of this threshold is that for |t| > 4.5 and v > 1000 the confidence p to accept the null
hypothesis is smaller than 0.00001 which is equivalent to a 99.999 % confidence that the
two sets were not drawn from the same population. Of course, when the degrees of freedom
v are not explicitly evaluated, it can occur that the assumption v > 1000 does not hold.
However, practice has shown that this procedure rarely produces false positive results
in side-channel analysis contexts. Yet, calculating the actual confidence p is certainly
preferable, scientifically correct and can still be efficiently implemented [MRSS18]. Since
the Welch’s t-test is designed to distinguish the means of two distributions, it can only
be applied to first-order univariate analyses in its simplest form. Schneider et al. [SM15]
extended the methodology to arbitrary orders and variates and provide the required
formulas for incremental one-pass computation of all moments.

558 DL-LA: Deep Learning Leakage Assessment

Pearson’s χ2-test. In order to mitigate some of the limitations and shortcomings of
the moment-based nature of the Welch’s t-test, in particular for higher-order analyses
of masked implementations, Moradi et al. [MRSS18] suggested the Pearson’s χ2-test. In
contrast to the t-test this hypothesis test analyzes the full distributions and can capture
information that lies in multiple statistical moments. Thus, it prevents false negatives
when moment-based analyses become suboptimal [MRSS18].
In a first step a contingency table F has to be constructed from the two sets Q0 and Q1
(basically two histograms). We denote the number of rows by r (= 2, when two sets are
compared) and the number of columns by c (number of bins of the histograms). The
χ2-statistics x and the degrees of freedom v can then be computed using the following
formulas.

x =
r−1∑
i=0

c−1∑
j=0

(Fi,j − Ei,j)2

Ei,j
v = (r − 1) · (c− 1)

Ei,j denotes the expected frequency for a given cell.

Ei,j =

(∑c−1
k=0 Fi,k

)
·
(∑r−1

k=0 Fk,j

)
N

Finally, the confidence p to accept the null hypothesis is estimated via the χ2 probability
density function, where Γ(.) denotes the gamma function [MRSS18].

p =
∫ ∞

x
f(x, v)dx f(x, v) =

x

v
2−1e−

x
2

2
v
2 Γ(v

2) x > 0

0 otherwise

In contrast to the t-test this procedure can easily be extended to more than two sets
of data (r > 2), which can be a valuable feature when used as distinguisher for key
recovery attacks. Generally, it can be said that in cases where the χ2-test provides a
higher confidence to reject the null hypothesis than the t-test (on the same side-channel
data), the analysis of the leakages requires some special attention. This is usually the
case when masked implementations with low noise levels are analyzed [Sta18, Moo19] or
when hardware-masking schemes like threshold implementations cause leakages in multiple
moments due to physical defaults such as glitches [Sta18, MRSS18].

2.2 Deep Learning
We give a brief summary of the history and applications of deep learning and subsequently
introduce definitions and explain the underlying principle.

History and Applications. Historically, the field of machine learning dealt with extracting
meaningful information from data by applying relatively simple mathematical models, e.g.,
Bayes Classifiers, Support Vector Machines or Decision Trees to a sanitized version of the
input data. This required manual and time-consuming feature engineering to predetermine
which elements might be useful in a given set of raw data and how to best represent them,
e.g., Canny edge detection as a first hard-coded step for image classification.
In contrast, deep learning methods are generally capable of learning from raw input data,
thereby making the elaborate modeling process unnecessary. Since the breakthrough
improvement of classification accuracy on the ImageNet data set in 2012 [KSH12], deep
learning has been successfully applied to many diverse tasks such as speech recognition,
drug discovery, natural language processing, visual art style transfer, image classification,
autonomous driving and strategy games.

Thorben Moos, Felix Wegener and Amir Moradi 559

More recently, the side channel community discovered deep learning as a tool to perform
profiled attacks [CDP17, HGM+11, MPP16, MDP19b] with competitive results compared
to classical modeling techniques, e.g., based on a multivariate normal distribution. On the
other hand, the run-time effectiveness of DL-based approaches over classical machine learn-
ing is sometimes questioned [PSK+18]. Apart from our present work, only few publications
have investigated the use of deep learning for the non-profiled case, including [Tim19]
and [PCBP21]. In the former article a method is introduced that exploits the correlation
between a correct key guess and a steep learning rate to enable key recovery. The latter
article introduces a novel framework based on unsupervised learning to improve horizontal
attacks on (protected) implementations of public-key cryptosystems.

Principle and Definitions. In the following we limit ourselves to sequential neural net-
works (without recurrent elements) used for the purpose of classification. The aim of this
description is to give brief definitions for the standard terms in deep learning, while the
explanation of principles is intentionally very shallow.
A neural network is structured into multiple layers, each containing a matrix of learnable
weights w that is linearly applied to its inputs x and a non-linear activation function
applied to each coordinate of the result of this matrix multiplication. The output of this
combined operation is taken as an input for the subsequent layer. Finally, the output
layer of the neural network contains as many output coordinates as classes2 (c) and uses
softmax as an activation function

softmax(xj) = exj∑c
i=1 e

xi
,

such that the sum over all outputs is always equal to one, thereby forming a probability
distribution over the possible class labels.
Let us first assume the weights are initialized with some values before an evaluation of the
network takes place by applying the function of the first layer to the input sample and
subsequently propagating the computed values forward layer by layer until all layers have
been evaluated. The prediction y′ consists in the output coordinate of the final layer with
the highest value.
In the beginning, the weights in a neural network are initialized with random values.
To determine useful weights that achieve accurate prediction values, a training phase is
necessary. First, the designer needs to define a metric to measure the distance between
a prediction y′ and the actual class label y. This metric is called a loss function which
determines the loss score. To perform training, a data set with labeled inputs, i.e., a list
of tuples (x, y), is separated into batches of a fixed size b. The neural network is evaluated
simultaneously on all samples in a batch thereby producing loss scores. After each batch
an optimization strategy based on Backpropagation is used to adjust all weights in the
neural network dependent on the gradient of the loss function. Each iteration through the
entire training set is called an epoch. To minimize the loss score, training over multiple
epochs is performed in each of which the training data is randomly regrouped into new
batches. For simplicity we assume that the training ends after a predetermined number of
user-defined epochs.
To judge the quality of the classifier during and after training, the metrics accuracy and
validation accuracy should be considered. While accuracy is related only to the training
set, validation accuracy takes an entirely separate validation set into account, to ensure
that the traits learned are actually generalizable opposed to rote learning of the specific
training set (the latter phenomenon is called overfitting).
When choosing and training a deep learning model, the designer has to determine values for
many so-called hyper-parameters3, these include the depth of the network, the types and

2We limit ourselves to this variant called one-hot encoding.
3In distinction from the parameters, i.e., the concrete weights learned during training.

560 DL-LA: Deep Learning Leakage Assessment

sizes of layers, their activation function, the loss function and the optimizer strategy. We
provide the hyper-parameters we chose for both of our network architectures in Section 3.3.

3 DL-LA: Deep Learning Leakage Assessment
We introduce Deep Learning Leakage Assessment (DL-LA), a novel leakage assessment
methodology based on deep learning. Our method is simple to apply and outperforms
classical leakage detection approaches such as the Welch’s t-test and the more recently
proposed Pearson’s χ2-test in many cases due to its intrinsically multivariate nature. We
specify two neural networks that showed excellent and robust detection performance in all
our practical case studies. Further, we apply Sensitivity Analysis (SA), which has been
used in other SCA contexts for leakage visualization, to leakage assessment and preempt
several common pitfalls during adoption of DL-LA.

3.1 Core Idea of DL-LA
The aim of leakage assessment is to determine whether an attacker is able to extract
information from side-channel measurements. The current state of the art for non-profiled
adversary models is based on univariate statistical distinction tests (Welch’s t-test, Pearson’s
χ2-test) which are applied to two groups of side-channel measurements collected for two
distinct fixed inputs processed by the target implementation (alternatively one group for
random inputs and the other one for fixed).
DL-LA maintains the basic idea of distinguishing two groups of side-channel traces from
each other (fixed-vs-fixed). Hence, from an evaluator’s perspective the entire measurement
setup and tool-chain can remain unchanged when adopting our methodology. We apply
deep learning to the concept of leakage assessment by training a neural network to serve
as a distinguisher between the two groups. This is done in a supervised-learning-based
approach by applying labeled data from both groups to the network. The set of data
applied to the network during this phase is then called the training set. Afterwards, the
classification capabilities of the network are evaluated on a distinct validation set of labeled
measurements without revealing the true labels to the network. The success rate of the
classification on the validation set quantifies the amount of generalizable information that
the neural network could extract from the training set during the training phase. In more
detail, the network has learned generalizable features during the training when it can
provide a better-than-random guess which of the two fixed inputs was processed to produce
an individual validation trace. In case the classification of the whole validation set succeeds
with a higher percentage than it could be achieved by a randomly guessing classifier with a
non-negligible probability, it gives clear evidence for the fact that informative side-channel
leakage is present. In this context we present a simple metric to determine an exact
probability value p that quantifies the statistical confidence in the evidence.

3.1.1 Training vs. Validation Set

Please note that the number of required traces to detect the leakage is only related to
the training set. The size of the validation set can be chosen completely independent
and influences the result of the detection only if generalizable features (i.e., informative
side-channel leakage) could be extracted from the training set. Otherwise the percentage
of correct classifications will never be significantly different from 50%, no matter how large
the validation set is. To be more precise, the information included in the validation set
has no impact on the already trained classifier. It is merely an auxiliary data set required
to test the quality of the classification ability.
Therefore, in DL-LA it has to be distinguished between the required number of traces for

Thorben Moos, Felix Wegener and Amir Moradi 561

the detection (i.e., the training set) and the required number of traces to carry out the
evaluation (i.e., the sum of the training set and the validation set). Only the detection (i.e.,
the training) traces represent the number of measurements available to an attacker. In
other words, DL-LA evaluates the likelihood that an attacker is able to extract informative
side-channel leakage from the finite set of training traces. While the evaluator clearly
requires both sets to perform the evaluation, reporting the combined cardinality of both
sets as the number of traces for a successful detection would be misguided and could lead
to an incorrect impression about the security of the target. As an example, we assume
an evaluator wants to know with high confidence whether a set of 1 000 traces contains a
sufficient amount of information to detect a difference between the two underlying groups of
measurements. The typical procedure would be to train a neural network as a classifier on
those 1 000 traces over as many epochs as desired (while being mindful of overfitting) and
then validating the classifier on an arbitrarily-sized validation set. Even if the validation
set must be 100 000 000 traces large to overcome the confidence threshold desired, it still
means that only 1 000 traces were required to find and learn generalizable features in the
traces that allow better-than-random classification of new and unseen measurements into
the two groups. Simply speaking, this means that 1 000 traces already leak confidently
detectable information. However, 100 001 000 traces would be required for the evaluation.
Of course this is an extreme and unlikely corner case. Typically, much more reasonable
trade-offs between training set and validation set size can be achieved, which is also
demonstrated in the practical case studies we present in Section 4. Especially when
examining well-protected implementations which require millions of traces for a meaningful
analysis the size of the validation set is typically not the prohibitive element and is often
significantly smaller than the training set. Yet, it is important to make the distinction
between detection and evaluation traces, since minimizing the combined set, namely
training + validation, is not trivial and not a focus of this work. In the example detailed
above the evaluator could simply increase the size of training set in hopes of improving the
trained classifier and require a smaller validation set (and likely a smaller combined set) for
a confident detection. However, this would not properly answer the question whether 1 000
traces allow extraction of information. Therefore, we do not explore strategies to find the
minimum combined cardinality of the two sets although this might be an interesting topic
for future research in the area. We provide further discussion on the partition strategy into
training set and validation set to decouple the number of traces available to the attacker
from the statistical confidence the evaluator wants to obtain in Section 5.

3.1.2 Fixed-vs-Fixed or Fixed-vs-Random

Traditionally, leakage detection methods have relied on distinguishing one group of mea-
surements acquired when supplying the device under test with random inputs from another
group recorded when the device received a fixed input over and over again (although
both groups should be recorded in a randomly interleaved sequence [SM15]). Yet it was
pointed out at EUROCRYPT 2016 [DS16] that a partitioning based on two different fixed
inputs normally leads to a lower data complexity (i.e., fewer traces required for a successful
detection). The arguments given by the authors are essentially the same that led us to
suggest fixed-vs-fixed as the default partitioning strategy for DL-LA. In fact, the whole
DL-LA concept is applicable to a fixed-vs-random grouping as well. However, in that
case a larger data complexity has to be expected. Intuitively, this can be understood
best when picturing the distributions for both groups of measurements at one individual
sample point in the traces. In case of one group for fixed and one for random inputs,
the two distributions will always overlap if their cardinality is sufficiently large, since the
fixed input is also contained in the set of all inputs from which the random inputs are
selected. A larger difference between the two distributions is possible for two distinct fixed
inputs. In some cases the distributions may even be disjoint and allow perfect classification

562 DL-LA: Deep Learning Leakage Assessment

into the two groups. While this will not occur for measurements of securely masked
implementations, similar arguments can be made for higher-order statistical moments.
Generally, the maximum difference between two distributions at one sample point recorded
for fixed inputs will always be larger than the difference between one fixed and one ran-
dom group for a sufficiently large number of traces. When measuring the execution of
a cryptographic primitive over an extended period of time for each trace, sample points
with large differences between the two fixed classes will inevitably occur [DS16]. This is a
conceptual difference to analysis techniques that do not record a trace over time, but rather
take a single snapshot of the current state, such as static power SCA attacks [Moo19].
In those cases the two fixed inputs need to be selected with greater care in order to not
accidentally choose two fixed classes which lead to very similar leakage distributions. In
our experimental analysis, however, the leakage traces have a significant length in terms of
collected sample points (≥ 2 000) and covered clock cycles (> 20). Thus, following the
arguments of [DS16], it is unlikely that such traces recorded for two fixed classes show a
smaller maximum difference over the full length of sample points and clock cycles than
traces recorded for a fixed class and a random class. Hence, we are confident, and our
experimental attempts have confirmed this, that a fixed-vs-fixed partitioning strategy is
preferable for the DL-LA (and t- and χ2-test) methodology over a fixed and a random
class.

3.2 Overall Methodology
We assume that the recorded traces have already been separated into a set of N training
traces and a set of M validation traces, the latter of which should have an equal number
of elements from both groups to maximize the statistical confidence value that can be
obtained during the evaluation4. Initially, we determine the point-wise mean µ and
standard deviation σ of the whole trace set and standardize both the training and the
validation set by calculating

Xj
i := (Xj

i − µi)/σi,

with j denoting the trace and i the time sample within the trace. This very lightweight
and universal pre-processing step is necessary to reach a homogeneous range between all
input points and weights thus enabling efficient training.
Afterwards, the evaluator has to pick a confidence level, i.e., an upper bound on the chance
that a false positive occurs. We assume the common threshold in SCA evaluations of
pth = 10−5. Now, let v be the validation accuracy obtained by the neural network, then
the total number of correct classifications is computed as sM = v ·M . Considering the null
hypothesis H0 where the neural network did not learn anything and classifies randomly
(coin flip model), this corresponds to modeling the total number of correct guesses as a
random variable following a binomial distribution

H0 : X ∼ Binom(M, 0.5).

The probability that at least sM correct classifications occur in a purely random classifier
is given by: P (X ≥ sM). This probability is easily computed as

P (X ≥ sM) =
M∑

k=sM

(
M

k

)
0.5k0.5M−k = 0.5M

M∑
k=sM

(
M

k

)
Now, we say that the implementation leaks information about the processed data if

P (X ≥ sM) ≤ pth.

In this case the exact location of leakage can be determined subsequently by Sensitivity
Analysis (cf. Section 3.4).

4We provide a discussion on the size of both sets in Section 5.

Thorben Moos, Felix Wegener and Amir Moradi 563

Table 1: Minimum validation set sizes calculated for different validation accuracy values v
obtained in Step 1.

v M ′ v ·M ′

75.00 % 76 57
60.00 % 470 282
56.00 % 1 300 728
51.00 % 45 600 23256
50.50 % 182 200 92011
50.10 % 4 549 000 2279049
50.05 % 18 194 000 9106097

3.2.1 Minimum Size of the Validation Set

As previously explained, there is always a trade-off between the size of the training set and
the size of the validation set while the minimization of their combined cardinality is not
trivial. Assuming the size of training set has been set to a fixed value N by the evaluator,
for instance because it determines the lifetime of the key or the whole device, then choosing
the minimum size of the validation set for a confident result can be approached by the
following iterative procedure.

• Step 1 : Choose M = 1,000 as the size of the validation set (or any other number of
traces that can be recorded in a short period of time)

• Step 2 : Perform DL-LA using N training and M validation traces, observe the
validation accuracy v

• Step 3 : Find smallest integer M ′ such that pth ≥ 0.5M ′
∑M ′

k=v·M ′
(

M ′

k

)
• Step 4 : Perform DL-LA using N training and M ′ validation traces, observe the

validation accuracy v′

• Step 5 : If pth ≥ 0.5M ′
∑M ′

k=v′·M ′
(

M ′

k

)
, the procedure terminates, otherwise set v =

v′ and repeat from the Step 3

This approach can be useful to approximate the total number of traces the evaluator
requires in addition to the training set in order to achieve a confident result, but only
in case detectable leakage is present. It relies on the assumption that the validation
accuracy which the trained classifier achieves on a comparably small validation set can
approximately be maintained on a larger set. The smaller the initial value of M is, the
likelier it is that this assumption can be incorrect. In such a case, multiple iterations may
be required. We have listed exemplary results of the procedure in Table 1. Please note, in
case the trace set does not contain enough information for distinction between the two
groups or the two groups indeed belong to the same population (i.e., the null hypothesis is
true), the procedure will never terminate and M ′ will approach infinity.
In general, minimizing the validation set will yield results where the confidence threshold
is just overcome. Often it can be useful to increase the validation set beyond M ′ in order
to achieve higher confidence values. We would like to insist that the number of validation
traces may often be the bottleneck for reducing the number of evaluation traces (training
+ validation) when analyzing unprotected implementations or generally traces that show
significant amounts of leakage. However, when evaluating SCA-protected implementations,
it is not uncommon, in our experience, that tens or hundreds of millions of traces are
required for a meaningful analysis. In such cases, the validation set is typically not the
prohibitive element. In our experience, validation sets larger than 5 or 10 million traces

564 DL-LA: Deep Learning Leakage Assessment

should not be necessary for any regular analysis, while larger training sets will often be
required. This is also showcased in some of our case studies in Section 4.

3.3 Proposed Network Structures
As already discussed in Section 1, our goal is to select and propose networks that perform
robustly on many different sets of side-channel data instead of maximizing the performance
towards one particular data set. In other words, we try to keep the network architectures
generally applicable and as free of any assumptions about the leakage to be analyzed or
the underlying implementation as possible. We have taken multiple approaches in order to
find such networks. First of all we have collected side-channel data containing different
types of leakage, such as first-order, higher-order, univariate and multivariate leakages,
from different kinds of devices, FPGA, ASIC, µC, while simulating different levels of
measurement quality, such as high signal-to-noise ratio, low signal-to-noise-ratio, aligned
and misaligned leakage traces. Once this collection had been assembled we essentially
followed a trial-and-error based approach in order to find the most suitable number of layers
and number of neurons per layer to built a simple multi-layer perceptron (MLP) providing
the best average classification performance across our data sets. The resulting network,
which is described below, is even fairly robust to small changes to its hyper-parameters.
In addition to the MLP we also suggest a simple convolutional neural network (CNN). In
order to find suitable hyper-parameters for this CNN we performed a hyper-parameter
search with Talos [mea20] on our data sets corresponding to all case studies. As a result
we suggest a network including a set of 8 different hyper-parameter combinations which
are evaluated against each other in Section 4. In summary, the two network architectures
proposed below have been selected because they proved to deliver a respectable level of
universality across a number of experimental data sets. Of course, we do neither claim
that the selected networks are the optimal solution for such purposes, nor that they
necessarily provide appropriate performance on any given set of side-channel data. Yet,
we are confident that they represent a good starting point for an investigation.
We have built, tested and evaluated both of the network architectures described below
in the Python library Keras (keras-gpu version 2.4.3) using TensorFlow (tensorflow-gpu
2.1.0) as the backend.

3.3.1 Multi-Layer Perceptron (MLP)

The MLP network consists of four fully-connected layers (Dense) of 120, 90, 50 and 2
output neurons. The input layer and each of the inner layers use a Rectified Linear Unit
(ReLU) as an activation function, while the final layer uses softmax. The four Dense layers
are each separated by a BatchNormalization layer. In summary, the model can be defined
in Python as:

model = Sequential([
Dense(120, activation = ’relu’, input_shape= (tracelength,)),
BatchNormalization(),
Dense(90, activation = ’relu’),
BatchNormalization(),
Dense(50, activation = ’relu’),
BatchNormalization(),
Dense(2, activation = ’softmax’)])

Further, we used the mean squared error as a loss function and adam as an optimizer with
the default parameters provided by Keras5. We chose the batch size as 2 000 samples for

5lr = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8, decay = 0.0

Thorben Moos, Felix Wegener and Amir Moradi 565

traces of length 5 000 points and 20 000 samples for traces of length 500 points and 1 00
for traces of length 200 000 points.

Justification. We chose ReLU defined as

relu(x) =
{
x, x ≥ 0
0, x < 0

as an activation function over other common possibilities, e.g., tanh or sigmoid, because of
better results regarding validation accuracy in initial tests as well as for better compu-
tational performance when operating on large data sets (which is highly relevant for the
evaluation of protected implementations). We chose the softmax activation function of the
final layer to create a probability distribution over both classes as explained in Section 2.2.
The purpose of each BatchNormalization-layer is to decouple the learning process of all
Dense layers from each other and additionally provide a means of regularization to prevent
overfitting [IS15].
We confirmed the suitability for univariate and multivariate leakage located in different
statistical orders and for traces as short as one point and as long as 200 000 points
which may be encountered during a typical leakage evaluation of symmetric cryptographic
primitives and provide extensive depth on the performance of our leakage assessment
approach in different case studies in Section 4.

3.3.2 Convolutional Neural Network (CNN)

In addition to the comparison between the MLP-based DL-LA and the classical detection
approaches in our case studies in Section 4, we performed a hyper-parameter search for
CNNs with Talos [mea20] on the data sets corresponding to all case studies. We utilized
the following convolutional network with one convolutional, one pooling and a final dense
layer

model = Sequential([
Reshape((tracelength,1), input_shape = (tracelength,)),
Conv1D(filters=filter, kernel_size=kernel_mult*peakdist, \

strides=peakdist//strides, input_shape=(tracelength,1), \
activation=’relu’),

MaxPooling1D(pool_size=pool),
Flatten(),
Dense(2, activation=’sigmoid’)])

to provide an extremely simple high-level network architecture that is not specialized
for any particular power traces and then performed a search through the following eight
hyper-parameter combinations:

filter: [12]
kernel_mult: [2, 3]
strides: [2, 3]
pool: [2, 4]

Note that the kernel size and stride distance is given relative to the distance of peaks, i.e.,
the length of a clock cycle, in the power trace. We chose the multiplicative factor larger
than one to assure that the convolution combines information from multiple clock cycles.
While we limited ourselves to the given eight hyper-parameter combinations, many choices
greater than one for filter, kernel multiplier, strides and pool are theoretically sound and
should lead to comparable results (cf. Section 4.1). In contrast to the MLP network
we used the binary_crossentropy as a loss function and chose sigmoid as the activation
function of the final layer.

566 DL-LA: Deep Learning Leakage Assessment

3.4 Extracting Temporal Information
If leakage is detected, the hardware designer or evaluator is usually interested in exactly
pinpointing the leakage locations to report or alleviate the shortcoming, e.g., masking
flaws. By applying Sensitivity Analysis (SA) based on input activation gradients [SZ13,
Tim19, MDP19a, PEC19], we can exactly locate all points of interest by quantifying how
much they contributed to the leakage function learned by the neural network. In short,
SA determines the partial derivates of one output coordinate of the neural network with
respect to the network inputs, thereby characterizing the effect of a slight change in each
individual input on the classification outcome.
We perform SA on the final network after training has completed by averaging the gradients
of one output coordinate (with respect to the network inputs) weighted with the network
inputs for all samples in the training set and subsequently take the absolute value. More
precisely, let xi denote the i-th input of our network, y0 the first output coordinate of
the network and Xj

i the value of the i-th input for trace j in the training set. Then the
sensitivity can be determined as:

si =
∣∣∣∣∑

j

∂y0

∂xi
·Xj

i

∣∣∣∣.
While the actual value of this expression has to be determined via the chain-rule over all
network layers, this process is fully-automated by TensorFlow such that the remaining
effort for the evaluator is a single function call. Instead of considering the network inputs,
a sensitivity analysis may also be performed based on the first layer weights [Tim19].

3.5 Common Pitfalls
We discuss the most important differences between the classical detection approaches and
DL-LA and aim to preempt common pitfalls an evaluator might encounter with our leakage
assessment:

Group Imbalance. While the classical TVLA based on the Welch’s t-test as well as
the χ2-test can handle groups imbalanced in mean, variance and size, we want to stress
that an equalization of group sizes in the validation set is extremely important for DL-
LA. If the groups are imbalanced, the test statistic no longer follows the distribution
X ∼ Binom(M, 0.5). Instead, always assigning the label of the more common group
leads to a classifier which outperforms random guessing, without actually being able
to distinguish the groups based on their traces. This discrepancy between actual and
theoretical distribution of the test statistic – given a sufficiently large validation set – will
lead to false positives. While the problem of severe group imbalance has previously been
addressed by sampling techniques [PHJ+19], we instead strongly advise pruning both
groups in the validation set to an exact ratio of 50/50 to achieve the highest possible
confidence.

Probability Adaption. An obvious idea to counteract the issue just addressed is the
adaption of the success probability in the Binomial distribution. Assume a slight (or even
significant) imbalance ε in group sizes

|G0|
|G0|+ |G1|

= 0.5 + ε.

The evaluator could simply adapt the distribution of the test statistic to

X ∼ Binom(M, 0.5 + ε).

Thorben Moos, Felix Wegener and Amir Moradi 567

While this might even show satisfactory results in the case of low noise and unprotected
or severely flawed implementations, which in turn lead to a high validation accuracy,
we caution against any alteration of the distribution. In all practically relevant cases
(protected implementation, moderate noise) a change of the success probability severely
lowers the confidence of the statistical test. More specifically, consider a validation set
of size 500 000 traces over which a validation accuracy of v = 0.506 has been achieved.
In case of a balanced validation set this event is highly statistically significant (10−17).
However, if the validation set contains a small bias of ε = 0.004 no significance can be
concluded as the remaining likelihood for this event is only 10−3. It is obvious that the
adapted test looses its statistical power in all interesting cases; hence, false negatives might
occur. Therefore, we want to reinforce the previous point to prune the validation set to an
exact 50/50 ratio.

Overfitting. We caution against using an overly complicated neural network as it might
lead to overfitting, which is defined by a continuous rise of the training accuracy over the
number of epochs while the validation accuracy begins to fall. The underlying cause of this
effect is the memorization of the training set as opposed to learning generalizable features
of the entire set. Hence, it can be prevented by using a network with a simple structure
which does not contain excessively many weights and optionally includes Normalization,
Regularization or Dropout layers (cf. Section 3.3).

4 Experimental Results
In the following we provide an experimental verification of the suitability of DL-LA as
a black box leakage assessment strategy. We strive for a realistic benchmark of our
approach with a clear real-world impact. For this reason we chose power measurements of
multiple hardware and software implementations of the PRESENT-80 ultra lightweight
block cipher [BKL+07] as the common target in our case studies. PRESENT has been
developed for ubiquitous and resource constrained computing environments, which exactly
constitutes the type of application that commonly requires side-channel security as a
design goal and may be certified by third-party evaluations labs. In total, we target
nine different implementations of the cipher on three different platforms (FPGA, ASIC,
µC). As a first step we evaluate the MLP (see Section 3.3) on all nine case studies for
one concrete choice of hyper-parameters. Those results are compared to the previously
introduced state-of-the-art leakage detection methods Welch’s t-test and Pearson’s χ2-test.
Afterwards, in order to demonstrate that robust detection on trace sets from 3 different
platforms is not limited to this particular MLP, we evaluate the CNN (see Section 3.3)
for a whole spectrum of hyper-parameters. Among the nine different implementations
that are tested, multiple are protected by masking and hiding techniques. The masked
variants feature provable first-order security. Some of them even provide security at any
order against univariate-only attacks. The results show that DL-LA with our choice of
network architectures is able to confidently detect leakage in smaller trace sets or with a
higher confidence using the same amount of traces compared to the conventional methods.

4.1 Measurement Setup
For the first 7 case studies, we have implemented the different instances of the PRESENT
block cipher on a SAKURA-G board [sak] which has specifically been designed for SCA
evaluations. The board features two Spartan-6 FPGAs, one as a target and the other
as a control interface. Case studies 8 and 9 feature protected versions of the PRESENT
cipher implemented on a 40 nm ASIC prototype and an ARM Cortex-M0 microcontroller
respectively. In all cases we have measured the voltage drop over a 1 Ω shunt resistor in

568 DL-LA: Deep Learning Leakage Assessment

Table 2: Measurement details for the nine different case studies.
Case Study 1 Case Study 2 Case Study 3 Case Study 4 Case Study 5

Platform FPGA FPGA FPGA FPGA FPGA
Alignment aligned misaligned heavily misal. aligned misaligned

Sampling Rate 1GS/s 1GS/s 1GS/s 1GS/s 1GS/s
Frequency 6MHz 6MHz ≤ 24MHz 6MHz 6MHz

No. of Traces 1 000 1 000 5 000 10 000 000 10 000 000
No. of Points 5 000 5 000 5 000 5 000 5 000

Case Study 6 Case Study 7 Case Study 8 Case Study 9

Platform FPGA FPGA 40nm ASIC Cortex-M0 µC
Alignment aligned misaligned aligned aligned

Sampling Rate 100MS/s 100MS/s 2GS/s 500MS/s
Frequency 6MHz 6MHz 12MHz 8MHz

No. of Traces 50 000 000 50 000 000 50 000 000 100 000
No. of Points 5 000 5 000 2 000 200 000

2 1 031415 state register 1

2 1 031819 key register

PLayer

S

Figure 1: Unprotected serialized PRESENT architecture with a 4-bit data path.

the Vdd path of the target with a digital sampling oscilloscope. On the SAKURA-G board
the measured signal is amplified through a built-in AC amplifier. The measurement details
for each of the nine different case studies including sampling rate, operating frequency,
number of traces and number of time samples per trace are listed in Table 2. For all
case studies we measured side-channel traces in a fixed-vs-fixed manner for two arbitrarily
selected fixed inputs. We have taken care to follow all rules that have to be considered
to avoid false positives in leakage assessment [SM15], e.g., the measurements of the two
groups are randomly interleaved and in the masked cases the communication between the
control unit and the target is performed in a shared manner (in our case the same holds
for the communication with the measurement PC).

Case Study 1: Unprotected PRESENT (FPGA), aligned Traces
In this first case study we target an unprotected serialized implementation of the PRESENT
block cipher. The architecture can be seen in Figure 1 and is similar to profile 1 introduced
in [PMK+11]. As a first step we evaluate the confidence to distinguish the two groups
of measurements (fixed-vs-fixed) by conventional methods. The results of the first-order
t-test and the χ2-test can be seen in Figure 2. In both cases we plot the confidence values
p instead of relying on the common (and less precise) approach of defining a threshold for
the intermediate statistics (e.g., |t| > 4.5). The t-test succeeds in providing a confidence
higher than 99.999 % for the distinguishability of the two groups after about 20 traces
since it shows a probability below 10−5 to accept the null hypothesis. The χ2-test requires
approximately 90 traces to overcome the desired confidence threshold. In conclusion, none
of the two methods faces any problems to distinguish the leakage distributions with a high
confidence when 1 000 traces are considered.
When applying DL-LA to the same traces, the results in Figure 3 are achieved. We have to
state here that a plot as depicted in Figure 3(b) is rather unnatural to obtain using DL-LA.

Thorben Moos, Felix Wegener and Amir Moradi 569

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n

1200 1250 1300 1350 1400 1450 1500 1550 1600

Time samples

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

0

20

40

60

80

-l
o

g
1

0
(p

)

0 100 200 300 400 500 600 700 800 900 1000

No. of Traces

0

20

40

60

80

-l
o
g

1
0
(p

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

0

10

20

30

40

50

-l
o

g
1

0
(p

)

0 100 200 300 400 500 600 700 800 900 1000

No. of Traces

0

10

20

30

40

50

-l
o
g

1
0
(p

)

Figure 2: Univariate leakage assessment using 1 000 traces (step size 10) of an unprotected
serialized PRESENT-80 implementation. From top to bottom: 1) Sample trace, 2) Overlay
of 10 sample traces, 3) t-test results, 4) χ2-test results.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time Samples

S
e
n
s
it
iv

it
y

0 100 200 300 400 500 600 700 800 900 1000

No. of Traces

0

1000

2000

3000

-l
o
g

1
0
(p

)

Figure 3: Sensitivity Analysis and DL-LA using 1 000 traces (step size 10) of an unprotected
serialized PRESENT-80 implementation. For each p value 30 epochs and a validation set
of 10 000 traces are considered.

570 DL-LA: Deep Learning Leakage Assessment

Normally, training and validating the network results in a confidence value after each
epoch. Thus, it would be more natural to train the network on a training set of fixed size
and to show the p values over the number of epochs to determine how many are required to
overcome the threshold. However, in order to offer the best possible comparison between
the leakage assessment approaches we repeated this process 100 times for a fixed number
of epochs (30) and a training set that increases by 10 traces per step and plotted the
maximum confidence over the number of traces. The result shows that a network which is
trained on only 10 traces is already capable of providing an extremely high confidence that
the two groups are distinguishable (since large −log10(p) values give confidence to reject
the null hypothesis). By increasing the size of the training set the confidence is boosted
significantly until the p values stagnate in a corridor between 10−2300 to 10−3011. Please
note that, as the validation set has a size of 10 000 traces, the maximum achievable p value
is 0.510 000 = 10−3011. Thus, the stagnation in the corridor is simply caused by the fact
that (almost) all of the traces in the validation set were classified correctly. By using a
larger validation set the −log10(p) values would rise even beyond 3011. We also perform
a Sensitivity Analysis on the network to determine the points of interest and obtain a
spatial resolution comparable to the univariate tests (cf. Figure 3(a)). The absolute values
of the SA are not meaningful and cannot be compared to any threshold. Thus, they
are omitted here. In summary, DL-LA outperforms the classical detection approaches in
terms of required number of traces and absolute confidence provided. Of course, for the
evaluation of DL-LA as performed in this case study, a validation set is required on top of
the training set. However, please note that we only chose a validation set of 10 000 traces
here in order to show the extremely high magnitude of achievable confidence values, even
when considering very small training sets6. In fact, the indication of distinguishability
relates only to the training set, and, in case the network learned generalizable features
from it, the confidence can be arbitrarily boosted by increasing the validation set. If no
generalizable features were learned (e.g., because no leakage is present) the percentage of
correct classifications will not be different from 0.5 by a statistically significant magnitude.
The advantages of decoupling the confidence from the number of traces (in the training set)
are discussed in Section 5. In Figure 28 of Appendix A, we additionally provide DL-LA
results for the first three case studies where the size of the union of the training and the
validation set does not exceed the number of traces considered by the t- and the χ2-test.
Even in that case DL-LA outperforms the classical approaches.

Case Study 2: Unprotected PRESENT (FPGA), misaligned Traces
This case study is an exact replication of the previous one apart from the fact that
we artificially created a misalignment of the traces, as apparent in Figure 4(b). This
misalignment was achieved by forcing the oscilloscope to trigger the acquisition of the
power traces close to the peak of the rising edge of the trigger signal (in our case at 2.48
V while the peak is at 2.5 V) as opposed to the more stable part in the middle of the
edge. Thus, due to the electronic noise, the acquisition is in some cases triggered earlier
than in others and the traces are not perfectly aligned anymore. Figure 4 shows that
the t- and χ2-test results do not seem to significantly suffer from this misalignment when
considering the absolute magnitude of the −log10(p) values. However, the number of
traces to overcome the threshold is increased in comparison to the previous case study
in both tests. DL-LA also performs similar as before, as apparent from Figure 5 and
outscores the classical detection approaches in required traces and provided confidence. It
seems that the slight misalignment of the traces does not significantly affect the detection

6In contrast, the minimum size of the validation set in order to be able to overcome the detection
threshold is 17, as −log10(0.517) > 5. However, this assumes a 100% correct classification by the network,
otherwise a larger set needs to be considered.

Thorben Moos, Felix Wegener and Amir Moradi 571

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n

1200 1250 1300 1350 1400 1450 1500 1550 1600

Time samples

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

0

20

40

60

80

-l
o

g
1

0
(p

)

0 100 200 300 400 500 600 700 800 900 1000

No. of Traces

0

20

40

60

80

-l
o
g

1
0
(p

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

0

20

40

60

80

-l
o

g
1

0
(p

)

0 100 200 300 400 500 600 700 800 900 1000

No. of Traces

0

20

40

60

80

-l
o
g

1
0
(p

)

Figure 4: Univariate leakage assessment using 1 000 misaligned traces (step size 10) of an
unprotected serialized PRESENT-80 implementation. From top to bottom: 1) Sample
trace, 2) Overlay of 10 sample traces, 3) t-test results, 4) χ2-test results.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time Samples

S
e
n
s
it
iv

it
y

0 100 200 300 400 500 600 700 800 900 1000

No. of Traces

0

1000

2000

3000

-l
o
g

1
0
(p

)

Figure 5: Sensitivity Analysis and DL-LA using 1 000 misaligned traces (step size 10) of
an unprotected serialized PRESENT implementation. For each p value 30 epochs and a
validation set of 10 000 traces are considered.

572 DL-LA: Deep Learning Leakage Assessment

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples
P

o
w

e
r

c
o
n
s
u
m

p
ti
o
n

1200 1250 1300 1350 1400 1450 1500 1550 1600

Time samples

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

0

2

4

6

8

10

-l
o

g
1

0
(p

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

No. of Traces

0

2

4

6

8

10

-l
o
g

1
0
(p

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

0

2

4

6

-l
o
g

1
0
(p

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

No. of Traces

0

2

4

6

-l
o
g

1
0
(p

)

Figure 6: Univariate leakage assessment using 5 000 traces (step size 50) of a serialized
PRESENT-80 implementation with clock randomization. From top to bottom: 1) Sample
trace, 2) Overlay of 10 sample traces, 3) t-test results, 4) χ2-test results.

capabilities of any of the leakage assessment techniques when unprotected implementations
are considered and the number of available traces is not chosen to be extremely small.

Case Study 3: (Unprotected) PRESENT (FPGA), randomized Clock
Since the artificial delay in the previous case study only slightly increased the data
complexity of a leakage detection we now try to test a countermeasure that leads to much
more heavily misaligned and noisy traces. In particular, we randomize the clock that
drives the targeted PRESENT implementation. This is done by clocking the cipher with
the output of a 64-bit LFSR. Hence, in each encryption (and therefore also in the power
traces) the same intermediate computations are executed at different times, since the
rising edges of the LFSR output occur in a random sequence. The input frequency of the
LFSR was set to 24 MHz so that the number of rising edges in a certain frame of time
is on average similar to being clocked by a stable 6 MHz clock. In this case the t- and
χ2-test struggle more significantly to detect leakage than in the previous experiments, as
apparent in Figure 6. While the t-test requires about 2 000 traces for a detectable breach

Thorben Moos, Felix Wegener and Amir Moradi 573

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time Samples

S
e
n
s
it
iv

it
y

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

No. of Traces

0

10

20

30

-l
o
g

1
0
(p

)

Figure 7: Sensitivity Analysis and DL-LA using 5 000 misaligned traces (step size 50) of
an unprotected serialized PRESENT implementation with clock randomization. For each
p value 30 epochs and a validation set of 10 000 traces are considered.

2 1 031415 state register 1

2 1 031415 state register 2

2 1 031415 state register 3

2 1 031819 key register

PLayer

PLayer

PLayer

G3

G2

G1

F1

F2

F3

Figure 8: Serialized PRESENT threshold implementation architecture with 3 shares and
a decomposed Sbox.

of side-channel security, the χ2-test barely overcomes the threshold at all. DL-LA on
the other hand is able to confidently state distinguishability after about 150 traces (cf.
Figure 7). Although all three approaches suffer significantly from the misalignment and
the added noise, DL-LA is still able to perform detection on a much smaller amount of
traces. Please note that, if desired by the evaluator, the confidence can be made arbitrarily
larger by increasing the size of the validation set.

Case Study 4: PRESENT TI (FPGA), aligned Traces
In this case study we target a serialized threshold implementation (TI) [NRR06] of the
PRESENT block cipher. The architecture can be seen in Figure 8 and is similar to profile 2
introduced in [PMK+11]. The PRESENT Sbox is decomposed into two quadratic functions
F and G. Both of those decompositions are split into three component functions each
according to the concepts of correctness, non-completeness and uniformity [NRR06]. As
apparent from Figure 8 the three shares in the computation of the decomposed Sbox are
evaluated in parallel. Thus, no first-order, but univariate higher-order (especially second-
and third-order) leakage is expected. We evaluate this assumption in Figure 9. As expected
the first-order t-test does not indicate detectable leakage, but the second- and third-order
tests do. Interestingly, we can confirm the statements made by the authors of the χ2-test
proposal [MRSS18] regarding the shortcomings of the moment-based nature of the t-test.
Unlike the situation in the previous case studies, the χ2-test outperforms the t-test here.
While the second-order and the third-order t-test require 3 000 000 and 1 100 000 traces for
the detection respectively, the χ2-test succeeds after only 600 000 traces and results in a
much higher confidence over all.

574 DL-LA: Deep Learning Leakage Assessment

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n

1200 1250 1300 1350 1400 1450 1500 1550 1600

Time samples

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

0

1

2

3

4

5

-l
o
g

1
0
(p

)

0 1 2 3 4 5 6 7 8 9 10

No. of Traces 106

0

1

2

3

4

5

-l
o

g
1
0
(p

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

0

5

10

-l
o

g
1

0
(p

)

0 1 2 3 4 5 6 7 8 9 10

No. of Traces 106

0

5

10

-l
o
g

1
0
(p

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

0

5

10

15

20

-l
o

g
1

0
(p

)

0 1 2 3 4 5 6 7 8 9 10

No. of Traces 106

0

5

10

15

20

-l
o
g

1
0
(p

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

0

10

20

30

40

50

-l
o

g
1

0
(p

)

0 1 2 3 4 5 6 7 8 9 10

No. of Traces 106

0

10

20

30

40

50

-l
o
g

1
0
(p

)

Figure 9: Univariate leakage assessment using 10 000 000 traces (step size 100 000) of a
serialized PRESENT threshold implementation. From top to bottom: 1) Sample trace, 2)
Overlay of 10 sample traces, 3) first-order t-test results, 4) second-order t-test results, 5)
third-order t-test results, 6) χ2-test results.

Thorben Moos, Felix Wegener and Amir Moradi 575

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time Samples

S
e
n
s
it
iv

it
y

0 5 10 15 20 25 30 35 40 45 50

Epoch number

0

1

2

3

4

5

-l
o
g

1
0
(p

)

0 5 10 15 20 25 30 35 40 45 50

Epoch number

0

500

1000

1500

-l
o
g

1
0
(p

)

Figure 10: Sensitivity Analysis and DL-LA using 500 000 (Fig. 10(b)) and 3 000 000
(Fig. 10(a), 10(c)) traces of a serialized PRESENT threshold implementation respectively.
For each p value a validation set of 1 500 000 traces is considered.

Please note that for this case study and the upcoming ones, where we analyze protected
implementations, we change the visualization of the DL-LA results. Due to the large data
sets involved it is not feasible to train many different classifiers with a steadily increasing
size of the training set over many steps. Instead we visualize the −log10(p) values over
the number of epochs (instead of over training traces). We do this twice, once for a
number of traces below the minimum required by the classical assessment method (here
χ2-test with 600 000 traces) and once for a larger training set in order to show that much
larger confidence values can be achieved in the protected cases as well. Those results
are presented in Figure 10. In case of a training set of size 500 000, the DL-LA succeeds
only just in overcoming the confidence threshold. However, barring the possibility of a
false positive results (which is highly unlikely), the confidence could be increased by an
evaluator either by considering more epochs or by increasing the validation set. In the
case of a training set including 3 000 000 measurements, the confidence that side-channel
leakage is present becomes extremely large. In fact much larger than the confidence results
achieved by the t- and χ2-test given all 10 000 000 traces.

Case Study 5: PRESENT TI (FPGA), misaligned Traces
This case study is equivalent to the previous one apart from the fact that we artificially
created a misalignment of the traces, as it was already done for case study 2. As a result
of this misalignment the leakage detection approaches require slightly more traces to
overcome the confidence threshold than in the aligned case. In particular, as shown in
Figure 11, the second-order and the third-order t-test require 3 600 000 and 1 500 000 traces
for the detection respectively, while the χ2-test succeeds after only 800 000 traces and
again results in a much higher confidence. The DL-LA is again the most powerful leakage
detection mechanism and succeeds for both sizes of the training set (800 000 and 3 000 000)
with much higher confidence values than any of the classical approaches (cf. Figure 12).

Case Study 6: PRESENT Multivariate TI (FPGA), aligned Traces
In the next case studies we concentrate on scenarios where the classical univariate detection
approaches are naturally unsuited to detect leakage, namely purely multivariate higher-
order leakages. These cases are the primary motivation to apply DL-LA in reality, as all

576 DL-LA: Deep Learning Leakage Assessment

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n

1200 1250 1300 1350 1400 1450 1500 1550 1600

Time samples

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

0

1

2

3

4

5

-l
o
g

1
0
(p

)

0 1 2 3 4 5 6 7 8 9 10

No. of Traces 106

0

1

2

3

4

5

-l
o

g
1
0
(p

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

0

5

10

-l
o

g
1

0
(p

)

0 1 2 3 4 5 6 7 8 9 10

No. of Traces 106

0

5

10

-l
o
g

1
0
(p

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

0

10

20

30

-l
o

g
1

0
(p

)

0 1 2 3 4 5 6 7 8 9 10

No. of Traces 106

0

10

20

30

-l
o
g

1
0
(p

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

0

20

40

60

-l
o

g
1

0
(p

)

0 1 2 3 4 5 6 7 8 9 10

No. of Traces 106

0

20

40

60

-l
o
g

1
0
(p

)

Figure 11: Univariate leakage assessment using 10 000 000 misaligned traces (step size
100 000) of a serialized PRESENT threshold implementation. From top to bottom: 1)
Sample trace, 2) Overlay of 10 sample traces, 3) first-order t-test results, 4) second-order
t-test results, 5) third-order t-test results, 6) χ2-test results.

Thorben Moos, Felix Wegener and Amir Moradi 577

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time Samples

S
e
n
s
it
iv

it
y

0 5 10 15 20 25 30 35 40 45 50

Epoch number

0

5

10

15

20

-l
o
g

1
0
(p

)

0 5 10 15 20 25 30 35 40 45 50

Epoch number

0

500

1000

1500

-l
o
g

1
0
(p

)

Figure 12: Sensitivity Analysis and DL-LA using 800 000 (Fig. 10(b)) and 3 000 000
(Fig. 10(a), 10(c)) misaligned traces of a serialized PRESENT threshold implementation
respectively. For each p value a validation set of 1 500 000 traces is considered.

other commonly applied methods to the best of our knowledge fail to capture the whole
amount of present side-channel leakage in these scenarios (at least without significant
manual effort and knowledge about the underlying implementation). We provide evidence
for this statement in the following.
We constructed a special version of the PRESENT threshold implementation architecture
depicted in Figure 8, that does not offer univariate side-channel leakage. To this end we
had to ensure that all six component function (G1, G2, G3, F1, F2 and F3) are evaluated
sequentially and not in parallel. We did this by gating their respective inputs with AND
gates which are controlled by a finite state machine (FSM). In addition to that we had
to make sure that none of the state registers are clocked at the same time. Thus a single
Sbox computation takes 7 clock cycles in the resulting hardware design. As expected, our
univariate leakage assessment using the classical detection approaches does not indicate the
presence of any side-channel leakage (cf. Figure 13). However, a multivariate investigation
could still find higher order leakage if performed at the correct offsets. This requires either
white-box knowledge about the implementation or must be determined by exhausting all
possibilities. The result for the best offset leading to detectable multivariate leakage is
illustrated in Figure 14 and shows leakage in the third order after more than 45 million
traces. Please note that we have performed each multivariate second-order t-test, third-
order t-test and χ2-test with the correct offsets (as we know all the implementation details)
and none of them was able to detect leakage with fewer traces.
In stark contrast, as apparent in Figure 15, DL-LA provides a very high confidence level of
−log10(p) > 150 for the presence of side-channel leakage after training on only 20 million
traces. We still retained the same network architecture as before and made absolutely no
assumptions about the leakage and required no white-box knowledge about the offset of
the individual evaluation of TI shares. Due to memory and time restrictions we pruned
the traces to a length of 500 sample points (1281-1780). Validation took place on 5 million
traces. Leakage becomes apparent after 25 epochs and continuously increases until our
chosen threshold of 50 epochs has been reached.

Case Study 7: PRESENT Multivariate TI (FPGA), misaligned Traces
Our next case study is a replication of the previous one, but again we misaligned the traces
through bad triggering. As shown in Figure 16 no univariate detection of leakage succeeds.

578 DL-LA: Deep Learning Leakage Assessment

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n

1485 1490 1495 1500 1505 1510 1515 1520 1525 1530

Time samples

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

0

1

2

3

4

5

-l
o
g

1
0
(p

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

No. of Traces 107

0

1

2

3

4

5

-l
o

g
1
0
(p

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

0

1

2

3

4

5

-l
o
g

1
0
(p

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

No. of Traces 107

0

1

2

3

4

5

-l
o

g
1
0
(p

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

0

1

2

3

4

5

-l
o
g

1
0
(p

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

No. of Traces 107

0

1

2

3

4

5

-l
o

g
1
0
(p

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

0

1

2

3

4

5

-l
o
g

1
0
(p

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

No. of Traces 107

0

1

2

3

4

5

-l
o

g
1
0
(p

)

Figure 13: Univariate leakage assessment using 50 000 000 traces (step size 500 000) of
a serialized multivariate PRESENT threshold implementation. From top to bottom: 1)
Sample trace, 2) Overlay of 10 sample traces, 3) first-order t-test results, 4) second-order
t-test results, 5) third-order t-test results, 6) χ2-test results.

Thorben Moos, Felix Wegener and Amir Moradi 579

2 4 6 8 10 12 14 16 18 20

Time samples

0

2

4

6
-l
o

g
1

0
(p

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

No. of Traces 107

0

2

4

6

-l
o
g

1
0
(p

)

Figure 14: Multivariate third-order t-test using 50 000 000 traces (step size 500 000) of a
serialized multivariate PRESENT threshold implementation.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time Samples

S
e

n
s
it
iv

it
y

0 5 10 15 20 25 30 35 40 45 50

Epoch number

0

50

100

150

-l
o

g
1

0
(p

)

Figure 15: Sensitivity Analysis and DL-LA using 20 000 000 traces of a serialized multi-
variate PRESENT threshold implementation. For each p value a validation set of 5 000 000
traces is considered.

In this case however, even the multivariate third-order analysis with the best possible
offset for leakage detection in the previous case study does not succeed (cf. Figure 17).
In other words, the acquired set of traces does not allow detection of any leakage using
conventional methods, at least in case the traces are not re-aligned before the analysis.
DL-LA however detects leakage with high confidence (−log10(p) > 60) after training on
only half of the available traces (25 000 000). This result is depicted in Figure 18.

Case Study 8: PRESENT TI (ASIC), aligned Traces
As a complement to the FPGA-based case studies outlined on the previous pages, we
have investigated a PRESENT threshold implementation realized in non-reconfigurable
hardware as well, namely as part of a custom 40 nm ASIC prototype. The test chip has been
developed for SCA evaluations and features several different cipher cores integrated into a
larger control framework. The PRESENT implementation is the same nibble-serialized
threshold implementation that has been investigated in case studies 4 and 5 already. We
have measured 50 000 000 traces in a fixed-vs-fixed manner with 2000 sample points per
trace. Results of a first-, second- and third-order univariate t-test as well as a χ2-test are
depicted in Figure 19. As expected, no first-order leakage can be observed, but second-order
leakage can be detected consistently beyond the confidence threshold after approximately
8 000 000 traces. Since there is no detectable leakage present in the third-order, it is no
surprise that the χ2-test requires more traces to distinguish the distributions, namely
about 15 000 000 traces.
However, DL-LA outperforms both methods by a large margin as it successfully classifies
enough validation traces correctly to achieve a huge confidence after training on only
100 000 traces. This result is shown in Figure 20. It demonstrates that the leakage detection
capability of our approach is not limited to the FPGA-based case studies. In fact, on
the ASIC measurements it achieves one of the most impressive results compared to the
classical detection approaches.

580 DL-LA: Deep Learning Leakage Assessment

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n

1485 1490 1495 1500 1505 1510 1515 1520 1525 1530

Time samples

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

0

1

2

3

4

5

-l
o
g

1
0
(p

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

No. of Traces 107

0

1

2

3

4

5

-l
o

g
1
0
(p

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

0

1

2

3

4

5

-l
o
g

1
0
(p

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

No. of Traces 107

0

1

2

3

4

5

-l
o

g
1
0
(p

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

0

1

2

3

4

5

-l
o
g

1
0
(p

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

No. of Traces 107

0

1

2

3

4

5

-l
o

g
1
0
(p

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

0

1

2

3

4

5

-l
o
g

1
0
(p

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

No. of Traces 107

0

1

2

3

4

5

-l
o

g
1
0
(p

)

Figure 16: Univariate leakage assessment using 50 000 000 misaligned traces (step size
500 000) of a serialized multivariate PRESENT threshold implementation. From top to
bottom: 1) Sample trace, 2) Overlay of 10 sample traces, 3) first-order t-test results, 4)
second-order t-test results, 5) third-order t-test results, 6) χ2-test results.

Thorben Moos, Felix Wegener and Amir Moradi 581

2 4 6 8 10 12 14 16 18 20

Time samples

0

1

2

3

4

5

-l
o

g
1

0
(p

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

No. of Traces 107

0

1

2

3

4

5

-l
o
g

1
0
(p

)

Figure 17: Multivariate third-order t-test using 50 000 000 misaligned traces (step size
500 000) of a serialized multivariate PRESENT threshold implementation.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time Samples

S
e

n
s
it
iv

it
y

0 5 10 15 20 25 30 35 40 45 50

Epoch number

0

20

40

60

-l
o

g
1
0
(p

)

Figure 18: Sensitivity Analysis and L-LA using 25 000 000 misaligned traces of a serialized
multivariate PRESENT threshold implementation. For each p value a validation set of
5 000 000 traces is considered.

Case Study 9: PRESENT TI (ARM Cortex-M0 µC), aligned Traces

Finally, we want to evaluate our methodology and network structure against a protected
software implementation. As a target we have chosen a PRESENT threshold implemen-
tation in software, as suggested in [SBM18], and implemented the design on an ARM
Cortex-M0 microcontroller. Naturally, side-channel traces recorded on software platforms
are longer in terms of sample points due to the much larger number of clock cycles required
to execute a cryptographic primitive. We have collected 100 000 traces with 200 000 sample
points each, which do not even contain the full first round of the cipher execution. In
case of properly masked implementations (see [SBM18]) usually no univariate leakage is
exhibited, but multiple sample points need to be combined in order to find input-dependent
information. Nevertheless, we start by applying the univariate distinction tests as a first
step. The results are depicted in Figure 21. No consistently detectable leakage can be
found by any of the four different methods (1st-, 2nd-, 3rd-order t-test, χ2-test). However,
when observing the progress of the maximum t-value over the whole number of points it is
obvious that the confidence threshold is exceeded multiple times in all four of them. We
claim that this effect is not caused by actual detectable side-channel leakage, but rather
due to the excessive trace length of 200 000 sample points and the ineptitude of point-wise
methods to estimate the confidence for a whole trace (without manual adjustments). This
is discussed in more detail in Section 5.
While no univariate leakage is (robustly) detectable in the trace set, a second-order multi-
variate t-test applied with the correct offsets rejects the null hypothesis with confidence
after merely 800 traces, as demonstrated in Figure 22. Since DL-LA can exploit multiple
occurrences of such multivariate second-order leakage across the whole trace length at once,
it again outperforms the classical approaches and requires a training set of only 500 traces
to achieve a higher confidence. This result is shown in Figure 24. As a conclusion, neither
the excessive trace length, nor the different architecture affects the detection capability of
our approach negatively. While manual (or exhaustive) search for the correct offsets is
required for the classical detection approaches, DL-LA does not require any additional

582 DL-LA: Deep Learning Leakage Assessment

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time samples

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n

1200 1250 1300 1350 1400

Time samples

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time Samples

0

1

2

3

4

5

-l
o
g

1
0
(p

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

No. of Traces 107

0

1

2

3

4

5

-l
o

g
1

0
(p

)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time Samples

0

5

10

15

-l
o
g

1
0
(p

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

No. of Traces 107

0

5

10

15

-l
o

g
1

0
(p

)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time Samples

0

1

2

3

4

5

-l
o
g

1
0
(p

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

No. of Traces 107

0

1

2

3

4

5

-l
o

g
1

0
(p

)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time Samples

0

5

10

15

-l
o
g

1
0
(p

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

No. of Traces 107

0

5

10

15

-l
o

g
1

0
(p

)

Figure 19: Univariate leakage assessment using 50 000 000 traces (step size 100 000) of a
PRESENT threshold implementation on a 40 nm ASIC prototype. From top to bottom: 1)
Sample trace, 2) Overlay of 10 sample traces, 3) first-order t-test results, 4) second-order
t-test results, 5) third-order t-test results, 6) χ2-test results.

Thorben Moos, Felix Wegener and Amir Moradi 583

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time Samples

S
e

n
s
it
iv

it
y

0 5 10 15 20 25 30 35 40 45 50

Epoch number

0

200

400

600

-l
o

g
1
0
(p

)

Figure 20: Sensitivity Analysis and DL-LA using 100 000 traces of a serialized PRESENT
threshold implementation on a 40 nm ASIC. For each p value a validation set of 500 000
traces is considered.

Table 3: Comparison of the different leakage assessment techniques based on the number
of required traces.

No. of Traces Case Study 1 Case Study 2 Case Study 3 Case Study 4 Case Study 5

t-test 40 90 2 000 1 100 000 1 500 000
χ2-test 90 150 4 900 600 000 800 000

DL-LA (tr.) < 10 20 150 500 000 800 000
DL-LA (tr. + val.) < 10 010 10 020 10 150 2 000 000 2 300 000

No. of Traces Case Study 6 Case Study 7 Case Study 8 Case Study 9

t-test 46 500 000 > 50 000 000 8 100 000 800
χ2-test > 50 000 000 > 50 000 000 15 000 000 3 600

DL-LA (tr.) 20 000 000 25 000 000 100 000 500
DL-LA (tr. + val.) 25 000 000 30 000 000 600 000 80 500

information and trains a successful classifier on the raw data.

Overview
In order to enable an easy comparison between the classical methods and the MLP-based
DL-LA results across all 9 case studies we have listed the required amount of traces for
each analysis in Table 3. The table distinguishes between the detection traces (i.e., the
training set) and the evaluation traces (i.e., the sum of the training and the validation
set). The number of detection traces required for a confident result are lower or as low as
that of the traditional methods. Yet, the number of traces required for the evaluation is
often higher than that of the conventional methods, especially for the more trivial case
studies. In the 3 case studies where the classical methods require the largest amount of
traces for a detection (namely CS6, CS7 and CS8), even the combined set used for DL-LA
is significantly smaller than the numbers required for t- and χ2-test. This confirms that
DL-LA is especially beneficial in the more complex, noisy and countermeasure-protected
cases. Also, please note that in the case studies where only multivariate leakage is present
(namely CS6, CS7 and CS9) DL-LA is compared to multivariate extensions of the t- and
χ2-test, which require manual effort and in-depth knowledge about the implementation,
while DL-LA works on the raw traces without any additional information.
We also analyzed the computation times required for the classical leakage detection methods
and DL-LA. Table 4 provides a comparison in that regard. We provide numbers achieved
on a server that features 256 GB RAM and 2 × Intel Xeon E5-2650 v3 CPUs with 40
combined threads. For DL-LA we repeat the same evaluation while additionally utilizing
a Tesla K80 GPU. All run times have been acquired by measuring the execution time
of the respective C++ and Python scripts using the std::chrono library and the time
module respectively and normalizing the resulting time periods by the number of traces

584 DL-LA: Deep Learning Leakage Assessment

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time samples 105

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n

19420 19470 19520 19570 19620

Time samples

P
o

w
e

r
c
o

n
s
u

m
p

ti
o

n

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time Samples 105

0

2

4

6

-l
o
g

1
0
(p

)

0 1 2 3 4 5 6 7 8 9 10

No. of Traces 104

0

2

4

6

-l
o

g
1
0
(p

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time Samples 105

0

2

4

6

-l
o
g

1
0
(p

)

0 1 2 3 4 5 6 7 8 9 10

No. of Traces 104

0

2

4

6

-l
o

g
1
0
(p

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time Samples 105

0

2

4

6

8

10

-l
o
g

1
0
(p

)

0 1 2 3 4 5 6 7 8 9 10

No. of Traces 104

0

2

4

6

8

10

-l
o

g
1
0
(p

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time Samples 105

0

2

4

6

-l
o
g

1
0
(p

)

0 1 2 3 4 5 6 7 8 9 10

No. of Traces 104

0

2

4

6

-l
o
g

1
0
(p

)

Figure 21: Univariate leakage assessment using 100 000 traces (step size 1 000) of a
PRESENT threshold implementation in software (ARM Cortex-M0). From top to bottom:
1) Sample trace, 2) Overlay of 10 sample traces, 3) first-order t-test results, 4) second-order
t-test results, 5) third-order t-test results, 6) χ2-test results.

Thorben Moos, Felix Wegener and Amir Moradi 585

0 20 40 60 80 100 120 140 160 180 200

Time Samples

0

20

40

60

80

-l
o
g

1
0
(p

)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

No. of Traces

0

20

40

60

80

-l
o
g

1
0
(p

)

Figure 22: Multivariate second-order t-test using 10 000 traces (step size 100) of a
PRESENT threshold implementation in software (ARM Cortex-M0).

0 5 10 15 20 25 30 35 40 45 50

Epoch number

0

50

100

150

-l
o
g

1
0
(p

)

Figure 23: DL-LA using 500 traces of a PRESENT threshold implementation in software
(ARM Cortex-M0). For each p value a validation set of 80 000 traces is considered.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time Samples 105

S
e

n
s
it
iv

it
y

0 5 10 15 20 25 30 35 40 45 50

Epoch number

0

50

100

150

-l
o

g
1
0
(p

)

Figure 24: Sensitivity Analysis and DL-LA using 500 traces of a PRESENT threshold
implementation in software (ARM Cortex-M0). For each p value a validation set of 80 000
traces is considered.

Table 4: Computation times for the different leakage detection methods on our hardware
equipment.

CPU GPU
Hardware 2 × Intel Xeon E5-2650 v3 1 × Tesla K80

univariate t-test (orders 1-3) 8.95 seconds / 1M traces -
univariate χ2-test 6.65 seconds / 1M traces -

DL-LA loading/preparing traces 133.67 seconds / 1M traces 133.67 seconds / 1M traces
DL-LA training 1 epoch 21.47 seconds / 1M traces 11.75 seconds / 1M traces
DL-LA validation 1 epoch 13.06 seconds / 1M traces 9.57 seconds / 1M traces

1M = 1000 000, assuming traces with 5 000 sample points and 8-bit resolution

586 DL-LA: Deep Learning Leakage Assessment

that have been processed. The t-test run times include fetching the traces from the hard
drive, creating the histograms, computing the statistical moments 1-3, evaluating the t-
statistics and degrees of freedom and finally calculating the confidence using multi-precision.
Similarly, the χ2-test numbers include fetching the traces from the hard drive, creating
the histograms, evaluating the χ2-statistics and degrees of freedom and finally calculating
the confidence using multi-precision. For both implementations we made use of the C++
implementations using the Boost library provided by [MRSS18]. In that regard, please
note that the run times depend on the decimal precision set in the Boost library, which
affects the minimum p value that can be expressed. For DL-LA we have separated the run
time into three different parts. In a first step the traces need to be loaded and prepared.
This step has to be performed once per DL-LA evaluation and does not benefit from
utilizing the GPU. The next two steps are training on the training set and validating on
the validation set. Both of those run times are given per epoch. As an example, consider
case study 4. Here, 10 million traces are analyzed by the t- and χ2-test. Accordingly,
the computation of the t-test (orders 1-3) took approximately 1 minute and 30 seconds
and the χ2-test took about 1 minute and 7 seconds. The DL-LA results (those with high
confidence in Figure 10(c)) have been obtained by loading and preparing 4.5 million traces
and then training on 3 million of those traces while validating on the remaining 1.5 million
traces for 50 epochs. This equates to 1 hour, 20 minutes and 3 seconds7 without GPU
support or 51 minutes and 23 seconds8 with GPU support. Clearly, DL-LA exceeds the
run time for the classical univariate tests by orders of magnitude. However, the univariate
tests can not detect any leakage in case studies 6, 7 or 9. We do not provide any run
times for the multivariate extensions of t- and χ2-test here, since their computational effort
depends significantly on the amount of prior knowledge about the target implementation.
Any exhaustive approach that does not require prior knowledge or manual effort, would
exceed the run time of DL-LA by far. Therefore, we believe that the computation time of
DL-LA is well spent in scenarios where leakage detection is not trivial.
Please note that we did not spend any particular time or effort to optimize the run time
for any of the methods involved. We are certain that better performances can be achieved
for all of the different techniques.

CNN Results and Hyper-Parameter Dependence
In addition to the MLP-based results presented in the individual case studies, we have
applied our CNN on most of the respective measurement sets as well. In fact, we have
done so for eight different hyper-parameter configurations introduced in Section 3.3.2. We
varied the sizes of kernel and strides as a double or triple of the points in one clock cycle
and the absolute pool size between two and four.
Figure 25 depicts our results: As before, all confidence results are given as −log10(p)
values. On the very left in light-green it can be observed that confidence values between
280 and 350 are achieved for 1000 training and 1000 validation traces on the trace sets
corresponding to case study 1 (aligned traces of unprotected PRESENT on FPGA). Note
that in this case 100% validation accuracy is often achieved and we limited the precision
of the confidence computation to 10−350. In leave-green we depict the confidence for 1000
training and 1000 validation traces corresponding to case study 2 (unprotected PRESENT
with misaligned trigger on FPGA), which falls between 280 and 350 as well. Next, in
dark-green the confidence achieved by the different CNN structures for 10 000 training
and 70 000 validation traces corresponding to case study 3 (unprotected PRESENT with
clock misalignment on FPGA) are shown. They range from 250 to 350. The confidence for

700:10:02 for loading/preparing 4.5 million traces, 00:53:41 for training on 3 million traces for 50 epochs
and 00:16:20 for validating on 1.5 million traces for 50 epochs.

800:10:02 for loading/preparing 4.5 million traces, 00:29:23 for training on 3 million traces for 50 epochs
and 00:11:58 for validating on 1.5 million traces for 50 epochs.

Thorben Moos, Felix Wegener and Amir Moradi 587

CS1 CS2 CS3 CS4 CS5 CS8 CS9
0

100

200

300

400
-l
o

g
1
0
(p

)

Figure 25: Confidence results achieved by the CNN network across eight hyper-parameter
configurations for seven case studies. Each case study is depicted in a different color.

the aligned and trigger-misaligned PRESENT TIs (case studies 4 and 5) are depicted in
light-blue and dark-blue based on 500 000 respectively 800 000 training traces and 500 000
validation traces each. Here, the confidence ranges from 180 to 350. Due to the high
data complexity of case studies 6 and 7 (i.e., training on ≥ 25 000 000 traces) we did not
evaluate them for all hyper-parameters and omitted them in this figure. Second to last,
the confidence results for 100 000 training and 200 000 validation traces corresponding to
the PRESENT TI on an ASIC (case study 8) range from 93 to 158 (orange). Lastly, we
obtained −log10(p) values between 70 and 119 for 1 000 training and 80 000 validation
traces corresponding to case study 9 (Software TI of PRESENT) shown in red color.
The red horizontal line indicates the confidence level of 10−5 that is commonly used as
a leakage indication. In summary, the suggested CNN is able to detect leakage with
high confidence in each of the tested case studies (from 3 different platforms) for any of
the applied hyper-parameter configurations. These results showcase the robustness of
DL-LA as a leakage assessment methodology across different network architectures and
even different choices of hyper-parameters.

5 Discussion
Before coming to a conclusion we discuss a few important aspects about the evaluation.

False Positives. False positives commonly appear as a problem in classical leakage
evaluations. We say that a t-test or χ2-test result is falsely positive in a leakage detection
scenario if the confidence threshold is exceeded for at least one sample point, despite the
absence of leakage. In other words, a false positive occurs when the test decides to reject
the null hypothesis for at least one sample point where it is in fact true [WO19]. This
phenomenon is caused by the point-wise independent nature of classical detection methods.
A threshold of pth = 10−5 set for each individual point will lead to an aggregation of the
error probability over the length of the entire trace, thereby lowering the confidence. More
formally, the likelihood that a false positive occurs at least once in a trace of length K can
be described as (assuming independence between the tests [WO19]):

P (false positive) = 1− (1− pth)K

For the typical value of K = 5 000 in many of our case studies and the common threshold
of pth = 10−5 this formula equates to 0.0488. Thus, the probability that the detection
threshold is falsely exceeded for at least one sample point is roughly 5% (when using

588 DL-LA: Deep Learning Leakage Assessment

the common methodology for t- and χ2-test). While the evaluator may have desired a
confidence of 1− 10−5 = 99.999% in the reported leakage by setting pth = 10−5, the actual
result can provide a confidence of only 1− 0.0488 = 95.12% when considering the full trace
length. For longer traces the situation is even worse. Case study 9, for example, evaluates
traces of K = 200 000 samples points each. Assuming independence between the tests at
each point, the probability for a false positive to occur is greater than 86%9. The impact of
this large probability can be observed in Figure 21, where the point-wise methods exceed
the threshold more often than not despite the apparent absence of univariate leakage.
Hence, a manual investigation of the individual leakage points is often necessary when
performing classical leakage detection to exclude false positives. Whitnall and Oswald
suggest multiple different solutions to this fundamental problem in their recent work,
including the Bonferroni correction, the Ŝidák correction and the Holm procedure [WO19].
They also conclude that these correction techniques inevitably increase the risk of false
negatives, which is undesirable from an evaluators point of view. Hence, no perfect solution
exists to fix point-wise methods in this regard.
In contrast, our deep learning based methodology does not produce several individual
univariate statistical tests, but produces a single decision metric based on the entirety of
points10. Hence, no correction of the confidence is required, independent of the length
of the traces to be analyzed. When DL-LA suggests to reject the null hypothesis, then
the methodology has already produced a classifier which is able to distinguish the two
groups under analysis with statistical significance. In our belief, this is the most convincing
evidence for distinguishability that any evaluator can hope for and goes beyond statistical
arguments. To practically verify the resilience of DL-LA against false positives, we trained
our networks several times on randomly generated data with random group assignments.
In these evaluations we never observed any confidence exceeding p = 10−2. Hence, we have
a high confidence, that false positives are far less likely to occur with our methodology if a
reasonable threshold is chosen, e.g., pth = 10−5.

False Negatives. Any leakage evaluation methodology should primarily aim to prevent
false negatives. We say that a leakage detection result is falsely negative if the procedure
does not report leakage with a confidence level above the detection threshold, despite
the presence of leakage, or even worse, despite the target being vulnerable to attacks.
Statistically, a false negative occurs when the test decides to accept the null hypothesis
while it is in fact false. Clearly, when relying purely on univariate distinction tests, any
multivariate higher-order leakage causes a false negative, in the sense that the device leaks
input dependent information while the test is unable to detect it as it can not be detected
with univariate methods regardless of the amount of acquired traces (unless multiple
consecutive cycles are interleaved due to frequency or setup manipulations [MM13]). This
has been one of the core motivations for this work. When DL-LA is employed, the risk of
overlooking temporally distributed leakages is significantly reduced. Although it is never
possible to guarantee the absence of leakage, the confidence in the security of a device
under test can be gradually increased by acquiring multiple sets of traces in a fixed-vs-fixed
manner with different selections of the fixed inputs while analyzing those trace sets using
the t-test, χ2-test and DL-LA. If required, the DL-LA procedure can even be reiterated
using different networks to be trained.
Despite the discussion above, it is noteworthy that the probabilistic nature of machine
learning procedures adds an additional, potentially false-negative-causing, element to the
analysis which does not exist in deterministic methods. Namely, when training a classifier
in the DL-LA procedure over multiple epochs, the training data is randomly regrouped in

9Please note that the nature of leakage measurements makes it unlikely that the tests are indeed fully
independent in practice, so the real probability could be lower [WO19].

10Note that pinpointing leakage in the time dimension is still possible due to sensitivity analysis as
demonstrated in our case studies.

Thorben Moos, Felix Wegener and Amir Moradi 589

0 5 10 15 20 25 30 35 40 45 50

Epoch Number

0

5

10

15

20

25
-l
o

g
1

0
(p

)

(a) using SCA traces from case study 1

0 5 10 15 20 25 30 35 40 45 50

Epoch Number

0

500

1000

1500

-l
o

g
1

0
(p

)

(b) using SCA traces from case study 4

Figure 26: Repeating DL-LA multiple times on the same data using the same network
structure and parameters. Left) training on 50 traces and validating on 300 traces; Right)
training on 3 000 000 traces, validating on 1 500 000 traces. Differences are caused by the
probabilistic learning procedure.

each epoch. Therefore, when performing DL-LA using the same network and parameters
multiple times on the same data, the results will not be exactly the same. The order
in which the shuffled traces are seen by the training procedure causes small differences
in the trained weights due to nature of the backpropagation strategy. Hence, there is
a probabilistic element which has an impact on the detection success and the resulting
confidence. Of course, it would be highly undesirable for an evaluator if this situation
causes the number of required traces for the detection to vary significantly when analyzing
the same data several times. Thus, in order to evaluate whether this may become a problem
on our data sets, we have exemplarily analyzed two of our case studies in this regard,
namely case studies 1 and 4. The results can be seen in Figure 26. We have repeated
the DL-LA procedure 10 times for each of the case studies for a fixed set of parameters.
The differences in the detection performance are obvious, despite all parameters and the
underlying data being identical. The results clearly show that for a small number of epochs
(< 20 here) it can definitely occur that for a fixed size of training and validation set, the
procedure succeeds in some iterations in detecting leakage and in others not. However, this
inaccuracy can be avoided in parts by increasing the number of epochs. When choosing
the number of epochs sufficiently large (we suggest ≥ 50), it becomes unlikely that the
random shuffling during the training procedure causes false negative results. The trade-off
between the computational effort (large number of epochs) and the risk of receiving false
negatives (small number of epochs) can be controlled by the evaluator.

Confidence Boosting. In a common leakage evaluation a statistical test (t-test, χ2-test)
is performed on the entirety of collected traces. Thereby, two different metrics, (i) the
number of traces required to extract meaningful information, and (ii) the level of confidence
the evaluator wants to achieve are tightly intertwined. More specifically, under realistic
noise conditions t-test and χ2-test are fundamentally unable to answer the question: Given
a very high confidence threshold of p = 10−50 can the attacker extract information given
only very few traces? In stark contrast, our deep learning based methodology operates on
two sets: One training set of size N and one validation set of size M . Here, N and M can
be chosen independently from each other. While N represents the actual amount of traces
available to an attacker, M should be chosen sufficiently large to reach the desired level
of statistical confidence, e.g. note that the maximum level of statistical confidence that
can be achieved with a given validation set equals 0.5M and might be much lower under
realistic noise conditions.

Sensitivity Analysis. As seen in Section 4 computing the gradient of an output component
of the neural network with respect to the input values can provide an insight into the
dependence of the classification result on each individual time sample. While this seems

590 DL-LA: Deep Learning Leakage Assessment

similar to the result of classical univariate hypothesis tests, which illustrate independent
statistical tests on each point in time, there are some crucial differences: DL-LA learns a
function depending on the inputs in some way that minimizes the given loss function. This
leads to two effects: (1) Points that do not contribute to leakage may still receive a non-zero
component in the gradient, (2) Points that contribute to leakage, but correlate heavily
with other points contributing to leakage might not be learned, as there is no intrinsic
incentive for the neural net to learn redundant information. However, our practical case
studies show, that the highest values in the Sensitivity Analysis typically correspond to
leakages which are also found by traditional analyses. Yet, we want to caution against
the idea that all leakage locations can be found with a single SA (c.f. CS4, CS5, CS8).
Instead, the process is more iterative: After a design flaw has been identified and fixed,
the DL-LA of the next design iteration might reveal new leakage locations of flaws that
already persisted in the initial evaluation, but were simply not learned by the classifier.

Validation Accuracy in Isolation. Commonly, neural networks are applied to classification
tasks in which the user is actually interested in obtaining a good classifier, e.g., obtain a
network to distinguish cat pictures from dog pictures. In those cases a very high validation
accuracy (0.99 + ε) is expected from a suitable neural network as each individual sample is
noise free and can easily be assigned to one specific group. In contrast, when evaluating
side-channel traces, especially of masked implementations, the randomized intermediate
values lead to an impossibility to precisely assign each individual sample to a group with
high accuracy.11 In contrast, the aim of the attacker can only be to distinguish different
processed intermediate values statistically, i.e., on average. This leads to a very different
expectation (compared to the image classification problem): The aim is to find a network
that works better than chance (validation accuracy > 0.5) and does so consistently over a
large validation set. Hence, we caution the evaluator to disregard seemingly small values for
the validation accuracy, e.g. 0.505. Instead, the size of the (perfectly balanced) validation
set should always be taken into account by computing the correct p-value according to the
Binomial distribution.

Test and Validation Set. In deep learning, there is a common distinction between the
validation set, used as a feedback mechanism to adjust the hyper parameters and the test
set, another completely independent set that is used to access the accuracy of the final
network. This approach is used to prevent implicit information leakage from the validation
set into the trained model (through the adjustment of hyper parameters). For our case
studies this distinction is not needed, because we performed all evaluations on networks
with identical hyper parameters and the chosen network architectures are not adjusted or
specialized by any means.

Misalignment. As seen in our case studies, DL-LA is resilient against slight misalignment
through bad triggering. However, this robustness is shared with the t- and χ2-test. When
operating on severely misaligned traces due to clock randomization both DL-LA based on
MLPs and classical tests lose orders of magnitude of confidence compared to an aligned
evaluation. Fortunately, this can be partially offset by increasing the validation set to
perform Confidence Boosting. Alternatively, the loss of confidence can be compensated by
performing DL-LA based on a CNN architecture, as showcased in Figure 25.

Targeted Block Cipher. For consistency reasons we have analyzed implementations of
the PRESENT block cipher exclusively in all of our 9 case studies on 3 different target
platforms. This brings the advantage that it is easier to compare the effectiveness of

11In fact, if we find a neural network with validation accuracy equal to 1.0 an attacker would most likely
be able to not only succeed with DPA, but mount a successful Simple Power Analysis (SPA).

Thorben Moos, Felix Wegener and Amir Moradi 591

countermeasures and the results from different devices with each other. However, we
would like to stress that DL-LA is by no means limited to this choice. In fact, like
the state-of-the-art methods for leakage assessment, namely t-test and χ2-test, DL-LA
is entirely independent of the cipher to be analyzed. Leakage assessment techniques
simply try to distinguish two sets of measurements from each other based on statistical
differences in the leakage distributions. If no dedicated protections are in place, such
differences occur whenever physically manipulating different data values on a device. For
leakage detection methods it is not important which particular operation causes such a
difference or which exact data value is processed by that operation at any given moment
in time. No modeling of the leakage of any specific operation or implementation part is
required. It is not even important whether such a difference has any dependency on a
secret variable (remember, leakage detection is not supposed to extract the secrets from
an implementation). Leakage assessment is simply a tool for an evaluator to test whether
- and what kind of - a dependency between the input given to an implementation and
the recorded leakage exists. Therefore, the cipher running on the target device has no
qualitative impact on the analysis. Since PRESENT, as an ultra-lightweight block cipher,
is one of the most area and energy efficient cryptographic primitives [BKL+07], it could
be argued that more general block ciphers, like the Advanced Encryption Standard (AES),
usually cause a larger power consumption per clock cycle. In that regard, the choice of
the cipher may have a quantitative impact on the detection success, e.g., requiring fewer
traces. However, this affects all leakage assessment techniques in the same manner and
should not notably influence the comparison of different methods presented in this work.
We believe it generally holds true that the choice of the countermeasure applied to a cipher
has a much larger impact on the success of the leakage detection as it directly affects the
noise and signal amplitude, the order and the variate of the leakage than the choice of the
cipher itself. For this reason we have concentrated on one block cipher as a target in this
work, but analyzed multiple countermeasures and device technologies.

Template Comparison. It is fair to wonder whether deep neural networks are the only
viable solution to build the kind of classifiers required for the leakage detection procedure
introduced in this work. In fact, any method that allows to build a binary classifier
based on a set of labeled (fixed-vs-fixed) side-channel measurements which succeeds
in classifying traces from a separate set with unknown labels better than randomly is
theoretically applicable and can be plugged into our methodology. However, we suppose
that it is difficult for any method not based on machine learning to provide the same
flexibility and universality with respect to the type of leakage to be expected that DL-LA
does. In order to investigate this expectation in more depth we provide a case study
based on template analysis here. Using multivariate Gaussian templates to model the
leakage patterns exhibited by a target implementation when different data values are
processed is a well established technique in the side-channel community typically used
for template attacks [CRR02]. Yet, the same principles can be applied to our leakage
assessment procedure. The strategy is simple. For each of the two (fixed-vs-fixed) groups a
multivariate Gaussian template over all time samples is created using all measurements in
the training set that have been recorded for this particular input. Then, each measurement
in the validation set is compared to the two templates and the likelihood for a match
is calculated. A binary classifier is then achieved by simply assigning the trace to the
group with the higher likelihood. Given the number of correct classifications and the size
of the validation set, the confidence that leakage is detected can be calculated by the
formulas given in Section 3. This method obviously shares some of the advantages of
DL-LA. First of all, in contrast to univariate distinction tests it bases its classification on
the whole trace at once and not on one individual time sample. In that regard, it also
reduces the risk of false positives (as discussed earlier in this section) and is naturally

592 DL-LA: Deep Learning Leakage Assessment

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

No. of Traces 104

0

200

400

600

800

1000

1200
-l
o

g
1

0
(p

)

(a) using SCA traces from case study 1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

No. of Traces 104

0

2

4

6

8

-l
o

g
1

0
(p

)

(b) using SCA traces from case study 1 (zoomed)

0.5 1 1.5 2 2.5 3

No. of Traces 107

0

1

2

3

4

5

-l
o

g
1

0
(p

)

(c) using SCA traces from case study 4

Figure 27: Multivariate leakage assessment using Gaussian templates. For the result on
the top a validation set of 10 000 traces has been used. For the result on the bottom a
validation set of 1 500 000 traces has been used.

capable of capturing multivariate and horizontal leakages. However, there are also some
drawbacks, highlighted in the following example. We have applied the described analysis
on two of our case studies from Section 4, namely case study number 1, based on the
unprotected PRESENT core, and case study number 4, based on the PRESENT threshold
implementation. Our templates are built using a multivariate Gaussian distribution. In
the training phase we first compute the sample mean vector and the sample covariance
matrix for the two groups. Since the underlying traces for both case studies have a length
of l = 5000 sample points, the sample mean vectors m0 and m1 for the two fixed input
classes are elements of Rl = R5000 while the sample covariance matrices C0 and C1 are
elements of Rl×l = R5000×5000. In the validation phase, the profiles consisting of mean
vector and covariance matrix are applied to a single validation trace x by computing the
Gaussian probability density function pdf for both of the templates:

pdf(x, 0) = 1√
(2 · π)l · |C0|

· exp(−1
2 · (x−m0)′ · C−1

0 · (x−m0))

pdf(x, 1) = 1√
(2 · π)l · |C1|

· exp(−1
2 · (x−m1)′ · C−1

1 · (x−m1))

A binary classifier is then built by assigning each validation trace to the group with the
higher likelihood. The results are depicted in Figure 27. Please note that we have used as
many validation traces as for the DL-LA results presented in the respective case studies
in Section 4. Clearly, the template method succeeds in detecting leakage in the data
set associated to case study 1 and produces a very high confidence to reject the null
hypothesis. However, as apparent in Figure 27(a) and Figure 27(b), the data complexity
to overcome the detection threshold is very large compared to both, the univariate tests
and the DL-LA results (13 000 training traces with a fixed validation set of 10 000 traces
vs less than 10 training traces using the same validation set12). The reason for this is
simply that the multivariate Gaussian templates span over all time samples in the traces
without explicitly giving more weight to certain areas of the trace which could allow

12Please note that the results in the Appendix A show that less than 10 training traces are also sufficient
when using a validation set of 500 traces for DL-LA on the data sets corresponding to case study 1.

Thorben Moos, Felix Wegener and Amir Moradi 593

straightforward classification. Since many time samples include more noise than useful
information, this prevents successful classification with templates that are built from a
small amount of training traces. Only after enough traces are considered in the training
set to average out a sufficient amount of noise, the templates actually become useful. Of
course, this disadvantage of the template method can be circumvented in multiple ways.
One example is to first select a number of points of interest in the trace and to only build
and match the templates based on these points. However, in this work we are explicitly
interested in methods that make any kind of pre-selection or pre-processing, especially any
manual effort, unnecessary. While DL-LA fulfills this criterion and is able to succeed with
a small data complexity on the raw traces without any pre-selection or pre-processing,
the template approach requires a significantly higher data complexity than the traditional
methods as well as DL-LA under the same conditions.
The template analysis performs even worse on the data set associated to case study 4.
While univariate tests and DL-LA succeed with less than 1 500 000 traces, the template
method fails to produce a classifier that performs better than randomly guessing even
with a training set of 30 000 000 traces (evaluated on a validation set of 1 500 000 traces).
This result is not unexpected since multivariate Gaussian models typically extract only
the mean vector and covariance matrix from the leakage traces. Clearly, this is insufficient
to properly capture higher-order leakages. Again, a pre-processing of the traces (e.g.,
mean-free square) and pre-selection of certain points of interest may enable the detection.
However, as discussed before, such additional steps depending on the type of leakage to be
expected are supposed to be unnecessary when using DL-LA. Given that the template
method is unable to detect univariate higher-order leakage, even with a large amount of
available traces, there is no reason to believe that the method could succeed when faced
with multivariate higher-order leakages. In such cases, the required effort to pre-process
the traces is even larger, as it requires in-depth knowledge about the device to combine the
correct samples in a trace by a combination function like the mean-free product. Therefore,
we conclude that templates are no suitable candidate for replacing the neural networks
used to build classifiers in DL-LA. For first-order horizontal leakages the technique may
have some value, but apart from that we do not believe that the approach can contend
with DL-LA in terms of flexibility and data complexity. From an efficiency standpoint the
template method is not beneficial either, rather the contrary. While the template creation
took less than 10 minutes for the data set corresponding to case study 1, it took almost 9
full days (210 hours and 53 minutes) of computation using 2 × Intel Xeon E5-2650 v3 CPUs
with 40 combined threads to build the templates for case study 4 on 30 000 000 training
traces with 5 000 time samples each (compare to Table 4). In general, the complexity of
building and inverting the covariance matrix grows at least quadratically with the number
of points in the traces, making this approach even less suitable for measurements with
significantly longer traces (e.g., case study 9).

Availability and Reproducibility. Sample implementations of DL-LA based on Keras
and TensorFlow using both proposed network architectures, including sensitivity analysis
and a multi-precision calculator of the log probabilities are freely available at GitHub
(https://github.com/Chair-for-Security-Engineering/DL-LA). For reproducibility of (a
part of) the experimental results presented in this work we have hosted the underlying
leakage traces for two of our nine case studies, namely CS3 and CS5, publicly online.
The download links can be found in the above-given GitHub repository. Due to the large
number of side-channel measurements required for the analysis in many of our case studies
it is not possible to host all trace files online. CS3 and CS5 were chosen as sample data
sets since they allow interesting and non-trivial analyses, but are still moderate in size
(and computational complexity). For access to further data sets or the underlying software
or hardware feel free to contact the authors.

https://github.com/Chair-for-Security-Engineering/DL-LA
https://github.com/Chair-for-Security-Engineering/DL-LA

594 DL-LA: Deep Learning Leakage Assessment

6 Conclusion
We introduced Deep Learning Leakage Assessment (DL-LA), the first methodology to
perform side-channel leakage detection by training a classifier based on deep neural networks.
We detail all steps that are required to perform such an analysis on a target device or
measurement set and develop a metric that allows to compare its results to conventional
leakage detection approaches like the t-test and χ2 test. We propose and evaluate two
different network structures that deliver universal performance across nine different case
studies based on real-world power traces measured on three different implementation
platforms, FPGA, ASIC and µC. Our experimental analysis and the extensive comparison
to traditional leakage detection methods demonstrate that DL-LA is capable of detecting
side-channel leakage in smaller data sets than the competition and results in confidence
values that are orders of magnitude higher than what traditional methods deliver.
In the case of multivariate leakage DL-LA effortlessly learns an accurate classifier, while
multivariate extensions of the t- and χ2-test require (i) exhaustive search over all time
offsets or (ii) expert-level domain knowledge to choose the correct offset. Most importantly,
we demonstrate a case study in which the classical hypothesis tests cannot detect any
leakage despite having white-box knowledge about the underlying implementation while
DL-LA indicates the insecurity with overwhelming confidence in a black box setting,
requiring only a part of the available traces.
Our method unifies horizontal and vertical side-channel evaluation, is simple to use, broadly
applicable and produces results with high statistical confidence. We believe that it can be
a valuable addition to the evaluator’s toolbox (as a complement to the t-test and χ2-test)
to severely reduce false negatives in multivariate and horizontal settings.

Acknowledgments
The work described in this paper has been supported in part by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy
- EXC 2092 CASA - 390781972 and through the project 271752544 “NaSCA: Nano-Scale
Side-Channel Analysis”.

References
[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel

Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES
2007, 9th International Workshop, Vienna, Austria, September 10-13, 2007,
Proceedings, volume 4727 of Lecture Notes in Computer Science, pages 450–466.
Springer, 2007.

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neural
networks with data augmentation against jitter-based countermeasures - profil-
ing attacks without pre-processing. In Wieland Fischer and Naofumi Homma,
editors, Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th
International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings,
volume 10529 of Lecture Notes in Computer Science, pages 45–68. Springer,
2017.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Bur-
ton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Cryptographic

Thorben Moos, Felix Wegener and Amir Moradi 595

Hardware and Embedded Systems - CHES 2002, 4th International Workshop,
Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, volume 2523
of Lecture Notes in Computer Science, pages 13–28. Springer, 2002.

[DS16] François Durvaux and François-Xavier Standaert. From improved leakage de-
tection to the detection of points of interests in leakage traces. In Marc Fischlin
and Jean-Sébastien Coron, editors, Advances in Cryptology - EUROCRYPT
2016 - 35th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings,
Part I, volume 9665 of Lecture Notes in Computer Science, pages 240–262.
Springer, 2016.

[GJJR11] G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi. A testing methodology for side
channel resistance validation. In NIST non-invasive attack testing workshop,
2011.

[HGM+11] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede,
and Joos Vandewalle. Machine learning in side-channel analysis: a first study.
J. Cryptographic Engineering, 1(4):293–302, 2011.

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[MDP19a] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. Gradient visualization
for general characterization in profiling attacks. In Ilia Polian and Marc
Stöttinger, editors, Constructive Side-Channel Analysis and Secure Design -
10th International Workshop, COSADE 2019, Darmstadt, Germany, April 3-5,
2019, Proceedings, volume 11421 of Lecture Notes in Computer Science, pages
145–167. Springer, 2019.

[MDP19b] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. A comprehensive study
of deep learning for side-channel analysis. Cryptology ePrint Archive, Report
2019/439, 2019.

[mea20] mikkokotila et al. Autonomio talos: Hyperparameter optimization for keras.
Source Code Repository, 2020. http://github.com/autonomio/talos.

[MM13] Amir Moradi and Oliver Mischke. On the simplicity of converting leakages
from multivariate to univariate - (case study of a glitch-resistant masking
scheme). In Guido Bertoni and Jean-Sébastien Coron, editors, Cryptographic
Hardware and Embedded Systems - CHES 2013 - 15th International Workshop,
Santa Barbara, CA, USA, August 20-23, 2013. Proceedings, volume 8086 of
Lecture Notes in Computer Science, pages 1–20. Springer, 2013.

http://github.com/autonomio/talos

596 DL-LA: Deep Learning Leakage Assessment

[Moo19] Thorben Moos. Static power SCA of sub-100 nm CMOS asics and the insecurity
of masking schemes in low-noise environments. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2019(3):202–232, 2019.

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking
cryptographic implementations using deep learning techniques. In Claude
Carlet, M. Anwar Hasan, and Vishal Saraswat, editors, Security, Privacy,
and Applied Cryptography Engineering - 6th International Conference, SPACE
2016, Hyderabad, India, December 14-18, 2016, Proceedings, volume 10076 of
Lecture Notes in Computer Science, pages 3–26. Springer, 2016.

[MRSS18] Amir Moradi, Bastian Richter, Tobias Schneider, and François-Xavier Stan-
daert. Leakage detection with the x2-test. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(1):209–237, 2018.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold imple-
mentations against side-channel attacks and glitches. In Peng Ning, Sihan
Qing, and Ninghui Li, editors, Information and Communications Security, 8th
Int. Conf., ICICS 2006, Raleigh, NC, USA, Dec, 2006, Proceedings, volume
4307 of Lecture Notes in Computer Science, pages 529–545. Springer, 2006.

[PCBP21] Guilherme Perin, Lukasz Chmielewski, Lejla Batina, and Stjepan Picek. Keep
it unsupervised: Horizontal attacks meet deep learning. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2021(1):343–372, 2021.

[PEC19] Guilherme Perin, Baris Ege, and Lukasz Chmielewski. Neural network model
assessment for side-channel analysis. IACR Cryptol. ePrint Arch., 2019:722,
2019.

[PHJ+19] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco
Regazzoni. The curse of class imbalance and conflicting metrics with machine
learning for side-channel evaluations. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2019(1):209–237, 2019.

[PMK+11] Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huaxiong
Wang, and San Ling. Side-channel resistant crypto for less than 2, 300 GE. J.
Cryptology, 24(2):322–345, 2011.

[PSK+18] Stjepan Picek, Ioannis Petros Samiotis, Jaehun Kim, Annelie Heuser, Shivam
Bhasin, and Axel Legay. On the performance of convolutional neural networks
for side-channel analysis. In Anupam Chattopadhyay, Chester Rebeiro, and
Yuval Yarom, editors, Security, Privacy, and Applied Cryptography Engineering
- 8th International Conference, SPACE 2018, Kanpur, India, December 15-19,
2018, Proceedings, volume 11348 of Lecture Notes in Computer Science, pages
157–176. Springer, 2018.

[sak] Side-channel AttacK User Reference Architecture. http://satoh.cs.uec.ac.
jp/SAKURA/index.html.

[SBM18] Pascal Sasdrich, René Bock, and Amir Moradi. Threshold implementation in
software - case study of PRESENT. In Junfeng Fan and Benedikt Gierlichs,
editors, Constructive Side-Channel Analysis and Secure Design - 9th Interna-
tional Workshop, COSADE 2018, Singapore, April 23-24, 2018, Proceedings,
volume 10815 of Lecture Notes in Computer Science, pages 227–244. Springer,
2018.

http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://satoh.cs.uec.ac.jp/SAKURA/index.html

Thorben Moos, Felix Wegener and Amir Moradi 597

[SM15] Tobias Schneider and Amir Moradi. Leakage Assessment Methodology - A
Clear Roadmap for Side-Channel Evaluations. In CHES 2015, volume 9293 of
Lecture Notes in Computer Science, pages 495–513. Springer, 2015.

[Sta18] François-Xavier Standaert. How (not) to use welch’s t-test in side-channel
security evaluations. In Begül Bilgin and Jean-Bernard Fischer, editors, Smart
Card Research and Advanced Applications, 17th International Conference,
CARDIS 2018, Montpellier, France, November 12-14, 2018, Revised Selected
Papers, volume 11389 of Lecture Notes in Computer Science, pages 65–79.
Springer, 2018.

[SZ13] Simonyan and Vedaldiand Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

[Tim19] Benjamin Timon. Non-profiled deep learning-based side-channel attacks with
sensitivity analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(2):107–
131, 2019.

[WO19] Carolyn Whitnall and Elisabeth Oswald. A cautionary note regarding the
usage of leakage detection tests in security evaluation. IACR Cryptol. ePrint
Arch., 2019:703, 2019.

598 DL-LA: Deep Learning Leakage Assessment

A Appendix

0 50 100 150 200 250 300 350 400 450 500

No. of Traces

0

50

100

150

-l
o
g

1
0
(p

)

0 50 100 150 200 250 300 350 400 450 500

No. of Traces

0

50

100

150

-l
o
g

1
0
(p

)

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

No. of Traces

0

2

4

6

-l
o
g

1
0
(p

)

Figure 28: DL-LA results targeting an unprotected serialized PRESENT-80 implemen-
tation, using (up to) half the traces as training set and half the traces as validation set.
From top to bottom: 1) aligned traces, 2) misaligned traces, 3) randomized clock. For 1)
and 2) the training set ranges from 10 to 500 traces in steps of 10, while the validation set
is 500 traces large. For 3) the training set ranges from 50 to 2 500 traces in steps of 50,
while the validation set is 2 500 traces large.

	Introduction
	Our Contribution
	Claims and Non-Claims

	Background
	Leakage Assessment
	Deep Learning

	DL-LA: Deep Learning Leakage Assessment
	Core Idea of DL-LA
	Overall Methodology
	Proposed Network Structures
	Extracting Temporal Information
	Common Pitfalls

	Experimental Results
	Measurement Setup

	Discussion
	Conclusion
	Appendix

