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Abstract. In the arms race between binary exploitation techniques and
mitigation schemes, code-reuse attacks have been proven indispensable.
Typically, one of the initial hurdles is that an attacker cannot execute
their own code due to countermeasures such as data execution preven-
tion (DEP, W^X). While this technique is powerful, the task of finding
and correctly chaining gadgets remains cumbersome. Although various
methods automating this task have been proposed, they either rely on
hard-coded heuristics or make specific assumptions about the gadgets’
semantics. This not only drastically limits the search space but also sac-
rifices their capability to find valid chains unless specific gadgets can
be located. As a result, they often produce no chain or an incorrect
chain that crashes the program. In this paper, we present SGC, the first
generic approach to identify gadget chains in an automated manner with-
out imposing restrictions on the gadgets or limiting its applicability to
specific exploitation scenarios. Instead of using heuristics to find a gad-
get chain, we offload this task to an SMT solver. More specifically, we
build a logical formula that encodes the CPU and memory state at the
time when the attacker can divert execution flow to the gadget chain,
as well as the attacker’s desired program state that the gadget chain
should construct. In combination with a logical encoding of the data
flow between gadgets, we query an SMT solver whether a valid gadget
chain exists. If successful, the solver provides a proof of existence in the
form of a synthesized gadget chain. This way, we remain fully flexible
w.r.t. to the gadgets. In empirical tests, we find that the solver often
uses all types of control-flow transfer instructions and even gadgets with
side effects. Our evaluation shows that SGC successfully finds working
gadget chains for real-world exploitation scenarios within minutes, even
when all state-of-the-art approaches fail.

1 Introduction

Early exploitation techniques relied on code-injection attacks, where an attacker
injects shellcode into the memory space of an application and then executes
it. However, quickly established mitigations forced attackers to adapt. Espe-
cially the introduction of the W^X policy (commonly referred to as data execution
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prevention (DEP)) made the execution of injected code infeasible, as memory
is marked as either writable or executable. This forced attackers to develop
novel exploitation techniques that reuse already existing code (e. g., return-to-
libc) [26,30,32]. As an additional line of defense, modern operating systems ran-
domize a program’s address space layout (ASLR). Still, a single information
leak or small, non-randomized parts of the executable often provide an attacker
the capability to mount their attack. In the past years, control-flow integrity
(CFI) [1] has gained popularity. This technique enforces the property that only
legitimate control-flow transitions inside a benign set required by the program
are performed. While greatly limiting the attacker’s freedom to chain arbitrary
code snippets, so-called code-reuse attacks are still feasible in practice [11,24,35].
In general, code-reuse attacks have been shown to be Turing complete [22,23].
Note that in practice, attackers often only need to disable W^X before they can
execute arbitrary shellcode in the context of the exploited program. This is com-
monly achieved by chaining so-called gadgets, (short) sequences of instructions
ending with an indirect control-flow transfer such as ret [26]. Even medium-
sized programs contain thousands of gadgets, making the process of extracting
and finding a suitable combination cumbersome. Various techniques to automate
the process were proposed: Initial attempts used pattern-matching-based strate-
gies to identify a chain [20,21]; later approaches [2,8,17] make use of symbolic
execution to classify gadgets and identify undesirable side effects, e. g., writing
values to memory. However, even the most advanced approaches to date rely on
various heuristics to confine the large search space [11,24,35]. While sometimes
effective, pruning may lead to false negatives: these heuristics try to find generic
chains to work across many targets, but in some cases no such chain exists.

In this paper, we propose a novel method to find gadget chains efficiently
without pruning the search space. One category of tools that particularly excels
at finding solutions for decision problems involving a large search space are
SMT solvers [33]; they check if a (potentially large) set of logical formulas—
so-called constraints—can be satisfied [15]. By building a logical formula that
describes (1) the CPU and memory state before executing the first gadget, (2) the
CPU and memory state desired by the attacker, and (3) the data flow between
gadgets, we can model the gadget chain synthesis as a reachability problem and
use an SMT solver to decide it. This approach is similar to bounded model
checking [27], a software verification technique used to determine whether a
system meets a given set of requirements: it combines a set of assumptions
that have to hold before execution (preconditions) and a set of requirements
that have to hold after execution (postconditions) with a logical encoding of the
program semantics and then queries an SMT solver. If the solver returns SAT
(satisfiable), it provides a model representing a concrete variable assignment that
satisfies the given constraints. In our case, this implies that the solver successfully
synthesized a gadget chain. If the result is UNSAT (unsatisfiable), the SMT solver
mathematically proved that the constraints cannot be satisfied and, thus, no
chain can exist for the given set of gadgets.
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We introduce the design and implementation of SGC, a generic approach
capable of automatically identifying gadget chains without relying on any clas-
sification or heuristics to prune the search space. At the same time, the logical
formula offers a framework to specify target-specific constraints. Our evaluation
demonstrates that SGC not only outperforms all state-of-the-art tools with regard
to finding gadget chains, but the synthesized chains always work in real-world
scenarios. For instance, we demonstrate how we can craft a gadget chain that
spawns a shell for a stack-based buffer overflow in dnsmasq: After defining the
concrete CPU state as preconditions, we encode the target state right before
executing the system call execve(&"/bin/sh", 0, 0); running SGC provides us
with a gadget chain spawning the shell without requiring any other information.
We further demonstrate that even complex constraints (e. g., the sum of all val-
ues in the gadget chain must be equal to a specific value) can be satisfied by
SGC.
In summary, our main contributions are:

– We introduce a generic approach to synthesize gadget chains in an automated
way based on bounded model checking. Our approach does not require heuris-
tics or pruning of the search space; instead, the SMT solver provides a proof
of existence in the form of a gadget chain or proves that no gadget chain can
be found for the given gadgets and constraints.

– We present the design and evaluation of our prototype SGC. We show that it
not only outperforms all state-of-the-art approaches, but also works in real-
world settings.

– Our approach provides unprecedented flexibility: SGC allows an attacker
to specify arbitrary constraints and, thus, model even complex or unusual
exploitation scenarios.

To foster further research in this area, we open-source SGC at https://github.
com/RUB-SysSec/gadget synthesis.

2 Shortcomings of State-of-the-Art Approaches

In the following, we discuss state-of-the-art approaches from academia and indus-
try that can be used in practice to generate gadget chains automatically and ana-
lyze their shortcomings in this regard (cf. Table 1). We find that existing tools
can be separated into two categories, based on their gadget chain generation:

Hardcoded Chaining Rules. Ropper [21] and ROPgadget [20] both fall
into this category. Their main task is to extract gadgets, but both require hard-
coded rules based on regular expressions to chain gadgets. While ROPgadget
only supports a single exploitation scenario (i. e., building a system call to
execve(&"/bin/sh\0", 0, 0)) , Ropper allows system calls to mprotect as
well. As a result, these tools are inflexible in practice.

Symbolic Exploration. angrop [2] and ROPium [17] operate on an inter-
mediate representation of gadgets, which allows them to symbolically determine
side effects and perform a classification. To this end, gadgets are first lifted, then

https://github.com/RUB-SysSec/gadget_synthesis
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analyzed, and chained together in the last step. The latter usually involves an
algorithm such as depth-first search (ROPium) or breadth-first search (angrop)
to identify a sequence of gadgets that fulfills the attacker’s specifications, such
as specific argument values. While vastly more flexible than approaches using
hardcoded rules, these tools are no panacea. They still rely on a classification
of gadgets, and while they provide greater flexibility by allowing simple mem-
ory and register constraints, they lack support for more elaborate constraints.
P-SHAPE by Follner et al. [8] also uses a symbolic exploration approach. How-
ever, it only focuses on finding gadgets useful for constructing library calls. It
does neither provide a full gadget chain nor allows an attacker to specify any
constraints.

Table 1. Features of different tools capable of automatically chaining gadgets.

SGC P-SHAPE angrop ROPium ROPgadget Ropper

Supports chains without ret ✓ ✗ ✗ ✓ ✓ ✓

No hardcoded chaining rules ✓ ✓ ✓ ✓ ✗ ✗

No classification needed ✓ ✗ ✗ ✗ ✗ ✗

Supports arbitrary postconditions ✓ ✗ ✗ ✗ ✗ ✗

Overall, all approaches lack flexibility; especially, they fail to support arbi-
trary postconditions (cf. Table 1). Instead, they rely on a classification of gadgets
and pre-defined strategies to identify a gadget chain. Even when finding a chain,
we empirically observe that they often crash the targeted program, e. g., through
invalid memory accesses. Despite this, no tool makes any attempt at verifying
the correctness of the generated gadget chains.

3 Design

In the following, we present a gadget-agnostic design that does not perform any
pre-classification of gadgets while providing high flexibility by allowing to spec-
ify arbitrary, complex constraints. The nature of our approach overcomes the
limitations of existing approaches. Most importantly, we can enforce an arbi-
trary CPU register and memory state before and after the exploitation—our
design will identify a gadget chain facilitating the transition from the initial to
the desired state using any gadgets available, including such using jmp and call
instructions. To this end, our approach encodes the search of the gadget chain
as a synthesis problem that an SMT solver decides. More specifically, our design
is based on bounded model checking: preconditions and postconditions are rep-
resented by the initial and desired CPU state, while a logical formula encodes
the possible gadget chain that facilitates the transition between both states.

Recall that bounded model checking is usually applied to a well-defined unit
of code, such as a function with specific conditions. The goal of bounded model
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checking is to qualitatively assert that no diversion from the specified postcon-
ditions is possible (i. e., any diversion implies a bug that must be fixed). In other
words, the goal is to find a counterexample violating the postconditions. For the
use case of synthesizing a gadget chain, the scenario is slightly different: There is
no well-defined unit of code such as a function, but a large number of individual
gadgets that can be executed in an arbitrary order. As a consequence, we are
not interested in knowing whether specific postconditions can be violated (as this
most certainly is the case given the number and nature of the gadgets); instead,
we are interested in whether there exists a chain of gadgets that satisfies the
postconditions. In other words, we task the SMT solver with finding a satisfy-
ing assignment for preconditions ∧ gadget chain ∧ postconditions. If the solver
finds such an assignment, the produced model contains concrete values for all
variables—including stack or other attacker-controlled buffers—which describe
the chain of gadgets. Thus, once a model is found, converting the values into a
chain becomes a trivial task. In the following, we present these steps in detail.

3.1 Gadgets

First, we must extract gadgets from the target program, which can then be
further processed. This step is independent of the subsequent encoding and is
covered in detail by previous works in this area [3,4,6,9,26]. As such, we omit
it here for brevity. Note that we do not require the gadget extraction to be
exhaustive or classify gadgets, as long as these sequences of instructions end
with an indirect control-flow transfer. As assembly instructions commonly have
side effects (e. g., mul rbx implicitly modifies the rdx, rax, and rflags register),
we disassemble and lift the gadgets to an intermediate representation (IR) with
explicit side effects. An example for two gadgets is visible in Fig. 1a. Notewor-
thy, each IR instruction has no implicit side effects. We reiterate that—other
than most state-of-the-art tools—our design imposes no restrictions, ranking, or
classification on the gadgets.

3.2 Logical Encoding

Given a pool of gadgets, we want to query an SMT solver to find a chain of
gadgets that transitions the initial program state (formulated as preconditions)
into the desired program state (formulated as postconditions). For this, we need
to logically encode the semantics of gadgets and chains. Especially, we must
model the semantics of gadgets, the data flow between instructions, and the
data flow between gadgets. Once we have encoded all components, we must
combine them into a single formula, which we then pass to an SMT solver. To
construct such a formula, we connect each statement through conjunctions. In
the following, we first describe how individual gadgets are encoded and then
explain how gadgets are interconnected to form a chain.

Instructions and Gadgets. To use a gadget in the logical formula, we
must first model all implicit state transitions on the instruction level: While
a CPU executes a sequence of instructions in a row, it implicitly tracks state
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Fig. 1. The high-level idea of our logical encoding: We lift assembly gadgets to an
intermediate representation, make the variable and memory accesses stateful (via static
single assignment form) and encode the data flow between gadgets using φ-functions.

changes in registers and memory. To represent this behavior in a logical formula,
we must explicitly model it on the instruction and inter-instruction level. To
address the instruction level, recall that we lift instruction into an IR form that
explicitly handles side effects. For the latter, we have to model the data flow
between instructions, e. g., when a register is assigned to another register or is
defined more than once. To achieve this, we make variable assignments stateful
by converting IR instructions into static single assignment (SSA) form [7]. This
implies that each variable definition is assigned a new unique index, while uses
always use the last defined index. To differentiate between gadgets, we prefix
SSA variable names with an identifier that is unique to each gadget. If a gadget
uses a variable that was not defined previously within this particular gadget,
we postfix it by IN to indicate that the value has been defined outside of the
gadget’s scope. In other words, it is an input to the gadget.

Example 1. Fig. 1b shows how rip a 2 depends on the memory at address
rsp a 1 - 8 (line 7), which itself can be calculated as rsp a 1 = rsp IN + 8
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(line 6). Note the identifier a, which distinctly marks this variable as belonging
to gadget a, and the postfix IN indicating that this instruction depends on rsp’s
definition outside this gadget.

Memory. Similar to registers, we apply SSA to memory to make it state-
ful, as otherwise, the SMT solver has no context information about memory
addresses and values. To transform memory into SSA form, we define mem-
ory read and write accesses as explicit operations: v j := read(M i, address,
size) and M i+1 := write(M i, address, value, size). Given a stateful
memory variable M, we read from and write to this variable at a given address
with a given access size. Note that the write operation is stored in a new memory
variable M i+1 that encodes the previous write. Internally, these operations are
expressed within a byte-wise memory model similar to the work of Sinz et al. [27],
in which memory accesses with larger sizes are translated to nested byte-wise
memory reads or writes. For a formal definition, we refer the interested reader
to Appendix A. We initialize all memory addresses to contain the value 0.

Interconnecting Gadgets. Up until now, we described how to encode
data flow within a single gadget using SSA for registers and memory. How-
ever, our goal is to combine multiple gadgets in a chain of length n without
making assumptions on neither the order of gadgets nor the particular gadgets
used. Especially, we allow gadgets to occur more than once in the chain. Thus,
in the next step, we have to logically encode the data flow between gadgets.
To achieve this, we first have to ensure that all variables are unique. So far,
variables are only unique with respect to their gadget due to the SSA form’s
unique identifier. However, to encode the order of execution, each variable must
also be unique with regard to the gadget’s position within the chain. There-
fore, we also include the position as index within the SSA variable names:
variable gadgetId position definitionIdx. This way, we can use any gad-
get at any position in the chain.

Example 2. If we consider the gadget for the first position in the chain, the
definition rbx a 1 (line 2 in Fig. 1b) becomes rbx a p1 1 (with p1 representing
the first position). This way, we can use the gadget in position 2 as well, as
rbx a p2 1 is a distinct variable.

Naturally, our encoding must consider that a gadget can be used at any
position in the chain, while, at the same time, we cannot know which gadget is
at a specific position within the chain. In other words, gadget a and gadget b
can both be at positions 1 and 2, but at the time of formula generation, we do not
know which of these gadgets will be at which position in the chain synthesized
by the SMT solver. Therefore, we must ensure that the gadget at position i + 1
uses the values derived by the gadget at position i; a scenario strikingly similar
to the problem of merging control flow in SSA form (for which φ-functions are
used). We must merge the state of all gadgets at chain position i such that it can
be used as input for the gadgets in the subsequent position. To achieve this, we
apply the following for each register and memory variable: We first determine
the variable’s last definition in each gadget for position i. Then, we merge the
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last definitions from all gadgets via a φ-function and define a new variable that
is used as input for the next position.

Example 3. Assume that we want to encode the gadgets for a chain of length
2 (cf. Fig. 1c). For each register, we create a φ-function that merges the last
definitions of these variables. In the following, we consider this process exem-
plary for rax at position 1. The initial value of rax is rax p1 IN—the input
of rax for the first gadget position. Since we do not know if gadget a or
gadget b is the first gadget in the chain, we must account for both possibil-
ities and merge their last definitions of rax in a φ-function. gadget a does
not modify rax, thus we use rax p1 IN; for gadget b, we use its latest defi-
nition, rax b p1 2. Finally, we define a new variable—rax p2 IN—that encodes
the merged variables and is used as input for the second position in the chain:
rax p2 IN := φ(rax p1 IN, rax b p1 2).

To model the data flow between gadgets, the logical formula has to connect
each input variable of the φ-function with the gadget that defined the corre-
sponding variable. On a technical level, we translate this abstract φ-function
into nested If-Then-Else expressions that select the corresponding variable
based on the program counter, which has to be equal to one of the gadget
addresses. This way, we ensure that the conditions are mutually exclusive (as
the program counter can only point to a single gadget) and, thus, each register’s
value can always be uniquely determined. This approach is based on work by
Sinz et al. [27].

3.3 Preconditions and Postconditions

Following the logical encoding of the gadget chain, we now describe how to set
the initial state (preconditions) and the targeted state (postconditions).

Preconditions. These conditions allow setting the initial state at the time
when the attacker can divert execution flow to the gadget chain. They constraint
the inputs of the first position in the gadget chain, e. g., we can encode relevant
context from the target program, such as the value of specific registers or memory
areas (e. g., by using a debugger). Additionally, we must specify the location
where the SMT solver should place the synthesized gadget chain (and how many
bytes are available), e. g., by choosing an attacker-controlled buffer on the stack.
This area is then considered a free variable in the formula, such that the SMT
solver can place gadget addresses and data there. We can also enforce specific
characteristics for any attacker-controlled areas, such as constraining memory
buffers to hold only values within a certain range.

Postconditions. While the preconditions outline the initial position, post-
conditions describe the desired state that the program should reach after exe-
cuting the gadget chain. More specifically, we can set any register or memory
address to a specific value (e. g., the system call we would like to execute and its
arguments). We encode these postconditions by asserting that the outputs (i. e.,
register and memory variables) of the last position in the chain are equal to the
given values.
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Furthermore, we also support indirect constraints, so-called pointer con-
straints. These constraints support common constructs, where a reference to
a specific value or string (e. g., “/bin/sh”) in memory needs to reside in a spe-
cific register. To this end, we add an assertion that the memory address pointed
to by this register must contain the desired value(s). This does not require us
to specify the memory address itself, but we can leave the task of choosing a
suitable memory address to the SMT solver. On a technical level, the values are
constrained as byte-wise memory read operations relative to the address chosen
by the solver.

Notably, the flexibility of our approach allows us to enforce arbitrary con-
straints between registers and memory locations. For instance, we could enforce
that (1) certain register values must be odd, (2) the sum of registers must be
equal to a specific value, or (3) the sum of two specific registers must be prime.
To put it differently, our design allows to constraint exotic, target-specific con-
ditions that may be useful in some exploitation scenarios.

3.4 Formula Generation

Our final formula consists of three main components: preconditions, gadget
chain, and postconditions. The preconditions describe the initial state, which
is used as input for the chain’s initial gadget. The chain contains the encoding of
individual instructions, the data flow between instructions within a gadget, and
the data flow between gadgets—in short, the complete semantics of the gadget
chain. Finally, the postconditions define the state which should be reached after
executing the gadget chain. Here, the attacker encodes the desired CPU state.
We combine these three components with logical conjunctions to the formula:

formula := preconditions ∧ gadget chain ∧ postconditions

We then pass this formula to an SMT solver that supports the combined
quantifier-free theory of fixed-size bit vectors (registers) and arrays (memory),
QF ABV [28]. If the solver finds a satisfying assignment, it provides a model, i. e.,
concrete values for each relevant variable in the formula. For all variables of
gadgets that are not relevant for the synthesized gadget chain, no values are
assigned. As a consequence, the model describes not only the initial state (e. g.,
values on the stack) but register and memory values for each gadget in the chain;
in other words, we receive sort of an instruction trace that includes the inter-
mediate values for each variable in the chain. In a final step, we can extract the
initial values for each controlled buffer and use them as exploitation payload.
When the payload is inserted, the gadget chain is executed as described in the
model. Because a satisfying assignment produced by an SMT solver is a proof
of existence, the gadget chain is guaranteed to reach exactly the specified post-
conditions. This is in strong contrast to state-of-the-art approaches, which often
use heuristics rather than proofs to construct a gadget chain.
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3.5 Algorithm Configuration

A few parameters define the performance of our approach, most of which affect
the SMT solver: (1) For larger numbers of gadgets, the SMT solver needs more
time in its decision process. To reduce its runtime, we can sample a small subset
of gadgets (e. g., 300 gadgets as determined in empirical tests). (2) Due to our
logical encoding, the chain length must be defined beforehand. While this may
appear inflexible, our evaluation shows that testing different chain lengths is
feasible in practice; if a shorter chain is possible, the SMT solver places semantic
no-operations as padding gadgets in the chain. (3) To avoid excessive runtimes,
we define upper time limits for the initial gadget extraction as well as for the
SMT solver. While limiting the initial gadget extraction may reduce the number
of available gadgets, this has no major impact if we only sample a subset.

4 Implementation

To demonstrate the practical feasibility of our proposed approach, we imple-
mented a prototype of SGC in roughly 5, 000 lines of Python code (see https://
github.com/RUB-SysSec/gadget synthesis). While SGC’s initial gadget extrac-
tion is based on Binary Ninja [34] (version 2.3.2660), all further steps are built
on top of Miasm [5] (commit 218492cd). Especially the logical encoding of gad-
gets is facilitated in Miasm’s IR. We extended its internal memory model to
be stateful. The logic formula generated in the encoding step is then passed to
the SMT solver Boolector [18], which is particularly suited to solve problems
within the domain theory of bit vectors and arrays [36]. As Boolector supports
the const-array extension [31], we use it to model memory and initialize it
with a default value of 0. As memory accesses should not happen in read/write-
restricted regions, we allow the user to specify which memory addresses may be
accessed. In general, the user can add any constraint they need, such as excluding
specific bytes from the chain (so-called bad bytes).

5 Evaluation

Based on the prototype implementation of SGC, we answer the following
questions:

1. Is SGC capable of automatically finding valid gadget chains in diverse exploita-
tion scenarios? How does it compare to state-of-the-art tools?

2. How does SGC perform in real-world exploitation scenarios?
3. How flexible and target-specific are SGC’s chains in comparison to other

approaches?
4. In what regard do SGC’s generated gadget chains differ from the ones found

by state-of-the-art tools?

To answer these research questions, we conduct the following experiments.

https://github.com/RUB-SysSec/gadget_synthesis
https://github.com/RUB-SysSec/gadget_synthesis
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5.1 Setup

All our experiments were performed using Intel Xeon Gold 6230R CPUs at
2.10 GHz with 52 cores and 188 GiB RAM, running Ubuntu 20.04 on x86-64.
To facilitate a deterministic analysis, we disable ASLR. Even if present, we only
require an attacker to leak the base address, e. g., via an information leak, which
is a weaker requirement than other approaches make [11,35].

We compare SGC against the state of the art discussed in Sect. 2. While these
tools work deterministically and take all gadgets into account, SGC does not: To
keep the runtime of the SMT solver manageable, a subset of gadgets is randomly
sampled for a provided seed. As a consequence, the sampled gadgets may be
insufficient to fulfill the attacker’s goals. To mitigate this problem, SGC uses by
default ten different seeds, running them in parallel and reporting the first chain
found. To add further variety, SGC attempts to find a chain of length 3 and 5, both
for 100 and 300 gadgets, while not using more than 128 bytes of the attacker-
controlled buffer. These values have been empirically chosen (cf. Sect. 5.6) In
summary, 40 configurations are executed in parallel. For our evaluation, we run
all configurations until completion for later analysis instead of returning the
first gadget chain found. As all other tools operate deterministically, we only
run them once. We emphasize that all tools are provided equal resources, i. e.,
CPU cores and RAM. While we restrict SGC to one hour for disassembly and the
SMT solver, we define a timeout of 24 h for all other tools. To verify whether a
generated chain is valid, we use GDB to place it in the attacker-controlled buffer
within the program and then execute the chain. This way, we ensure that the
gadget chain works in practice.

As targets, we use a diverse set of programs. In a first step, we replicate
the experiments of Follner et al. [8] on recent versions of chromium (version
88.0.4324.182), apache2 (version 2.4.46), nginx (version 1.19.9), and OpenSSL
(version 1.1.1f). All of these targets are dynamically linked and we configure SGC
to ignore shared libraries, simulating a scenario where only the base address of
the main executable is known but no locations of libraries. To cover scenarios
where libc is present, we create an empty wrapper program that is statically
linked against glibc version 2.31. To evaluate whether SGC can be used to exploit
real-world vulnerabilities, we use dnsmasq (version 2.77).

5.2 Finding a Chain

Based on the experiments by Follner et al. [8], we evaluate whether SGC is
capable of finding valid gadget chains. While a multitude of possible attacker
goals exists, in reality, attackers mostly aim at either calling library functions
such as mprotect (to change the protection flags of memory regions) and mmap
(to map a RWX page in which their shellcode can be placed), or at execut-
ing system calls, such as execve with the parameter /bin/sh that spawns a
shell. Therefore, we pick three exemplary attacker goals, namely (1) a library
call to mprotect(addr, len, prot) with three parameters, (2) a library call
to mmap(addr, length, prot, flags, fd, offset) with six parameters, and
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(3) a system call to execve(path, argv, envp) with four parameters (one
being the system call number) and the requirement to place a string in mem-
ory. On the x86-64 architecture, these arguments are passed via registers [16].
As parameters, we use fixed exemplary values that are common in real-world
exploitation scenarios, such as execve(&"/bin/sh", 0, 0) to spawn a shell or
setting prot in mprotect to RWX, such that an attacker could place and exe-
cute arbitrary shellcode. To compare the tools, we run each of them in the same
configuration, analyze whether it finds a chain, and check—based on our verifi-
cation tooling—if the chain is valid in practice. Table 2 depicts the results of this
experiment. As ROPgadget only provides fixed heuristics for execve, we exclude
it from the other attacker goals. Similarly, Ropper is limited to mprotect and
execve, and P-SHAPE focuses on library calls.

Table 2. Capability of finding a valid gadget chain to call mprotect, mmap, or execve.
Legend: ✓ = valid chain, (✓) = chain found but crashes program, ✗ = no chain found,
1) = chain found when increasing timeout to 5h, 2) = SGC proves that no chain exists.

SGC P-SHAPE angrop ROPium ROPgadget Ropper

mprotect chromium ✓ ✗ ✗ ✓ – ✗

apache2 ✓ (✓) ✓ ✓ – (✓)

nginx ✓ (✓) ✓ ✓ – ✗

OpenSSL ✓ (✓) ✗ ✗ – ✗

libc ✓ (✓) ✓ ✓ – ✓

mmap chromium ✓1 ✗ ✗ ✓ – –

apache2 ✓ ✗ ✗ ✓ – –

nginx ✓ (✓) ✗ ✗ – –

OpenSSL ✗2 ✗ ✗ ✗ – –

libc ✓ (✓) ✗ ✓ – –

execve chromium ✓ – ✗ ✓ ✓ ✗

apache2 ✓ – (✓) ✓ ✗ (✓)

nginx ✓ – (✓) ✓ ✗ ✗

OpenSSL ✓ – ✗ ✗ ✗ ✗

libc ✓ – ✓ ✓ ✓ ✓

Most tools find a chain for mprotect, which is the easiest goal since only three
registers have to be set. angrop struggled both with chromium and OpenSSL and
crashed during the attempt to locate gadget chains. Likewise, P-SHAPE crashed
for chromium. Although P-SHAPE found a chain for four targets, none of them
were valid in real-world scenarios: Manual verification revealed that they cause
segmentation faults (e. g., due to write attempts to inaccessible memory regions).
For mprotect, only SGC identifies a valid gadget chain for all targets.

In comparison to mprotect, finding a chain for mmap is significantly more
challenging since six register arguments have to be set, and thus more suitable
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gadgets are required. While all chains found by P-SHAPE crashed again, ROPium
produced valid chains for three targets. However, this was only possible after
we fixed a bug in its source code. SGC found four out of five valid chains. For
chromium, we had to increase the timeout for disassembly and solving to 5h, since
we initially did not find suitable gadgets to set r8 and r9, the fifth and sixth
argument to mmap. We discuss the shortcomings of our disassembly and random
sampling in more detail in Sect. 6. For OpenSSL, no tool was able to produce a
chain. To get more insights, we performed another experiment in which SGC was
given access to all 3045 available OpenSSL gadgets (instead of choosing a random
subset). After 226s, the SMT solver returned UNSAT, which can be understood as
proof of non-existence. In other words, SGC was able to assert that no chain for
the provided gadgets exists that fulfills the postconditions. This saves the user
valuable time as they are guaranteed that even manual analysis will be fruitless.

The last attacker goal, execve, models the common scenario where a shell is
spawned via a system call. It differs from the previous goals in the fact that not
only four register values must be prepared, but the string /bin/sh\x00 must be
placed in memory. To express this behavior in ROPium, the user has to manually
set a suitable memory address at which the string should be placed in memory.
As such, the gadget chain construction is not completely automated. However,
we include it since it is the only tool besides SGC that succeeds in finding valid
chains for almost all targets.

In summary, these experiments answer research question 1.: SGC outperforms
all state-of-the-art approaches and manages to find valid gadget chains for all
targets, even when other tools fail. For the only case where it did not find a
chain, it even provided formal proof that no chain for the available gadgets can
exist.

5.3 Real-World Applicability

To answer research question 2., we are interested in whether SGC proves helpful
towards finding gadget chains in real-world exploitation contexts. To this end,
we conduct a case study for CVE-2017-14493 [25], which describes a stack-based
buffer overflow in dnsmasq (up to version 2.77) [12]. In essence, an attacker
can craft a malicious DHCPv6 packet that, when received by dnsmasq’s DHCP
server, triggers an overflow in the dhcp6 maybe relay function, where the length
and data of a memcpy can be controlled by the attacker. This bug allows for the
injection of gadget chains of arbitrary length; if ASLR is present, an attacker can
exploit an information leak in the same version, assigned CVE-2017-14494, to
leak the base address [25]. For simplicity, we assume ASLR is already bypassed.

Our goal is to craft a gadget chain that calls execve(&"/bin/sh", 0, 0)
to spawn a shell. Following the System V AMD64 ABI calling convention [16],
register rax needs to hold the execve system call number (0x3b), while the
registers rdi, rsi, and rdx pass the arguments to execve. Therefore, we set the
postconditions accordingly. To define the preconditions, we have to inspect the
program state at the time when the attacker can divert execution flow to the
gadget chain. In detail, we dump the CPU state with GDB and constraint register
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values accordingly. After defining preconditions and postconditions, we logically
encode the gadget chain and query the SMT solver with the formula. SGC finds
a gadget chain after approximately 8m. A shell is spawned after embedding the
gadget chain in a DHCPv6 packet and sending it to dnsmasq For a detailed
explanation of the bug and chain found by SGC, we refer to Appendix B. To
conclude research question 2., SGC assists in real-world exploitation scenarios. It
only requires the initial CPU state as preconditions and the desired target state.

5.4 Target-Specific Constraints

To answer research question 3. that addresses the flexibility of our approach, we
conduct two experiments that model different exploitation scenarios. In the first
experiment, we aim at crafting chains that do not include so-called bad bytes.
Such bytes cannot be used in an exploit payload since they act as terminators
in the underlying program (e. g.,\x00 in C strings). We can avoid using such
bytes in our payload by adding the constraint that each byte in the attacker-
controlled buffer must be different from specific byte values. In this experiment,
we try to craft valid gadget chains that call mprotect, mmap, and execve in the
statically-linked libc wrapper, where \x0a and \x0b are considered as bad
bytes. SGC produced a valid gadget chain within, on average, 512s; similarly,
all other tools (excluding P-SHAPE, which does not support bad bytes) were
able to produce gadget chains. This is not surprising, as avoiding bad bytes is
a common requirement for many exploits and most tools consider this in their
heuristics. Then, we slightly modify this experiment: We set one of the functions’
parameter values to a bad byte (essentially prohibiting the tools from using this
specific value directly), such that the tools must construct the value indirectly
via the gadget chain. In this scenario, only ROPium and SGC manage to find valid
gadget chains. This shows that even a standard feature can be problematic for
heuristics-based tools.

In the second experiment, we add a more complex constraint: We require
that the sum of all values (quadwords) in the attacker-controlled buffer (where
the addresses and data for the gadget chain are placed) must be equal to the
value 0xdeadbeef. While this constraint seems artificial, similar constraints can
be found in commercial DRM systems that perform integrity checks over spe-
cific memory regions. While no other tool provides the flexibility to model this
behavior, we can enforce this within a few lines of code in SGC and produce valid
gadget chains for the same setup as before (within, on average, 527s).

Overall, we conclude that SGC provides great flexibility and allows to model
complex constraints. Thus, it covers even unusual exploitation scenarios.

5.5 Chain Statistics

To answer research question 4., in what regard differ our gadget chains from
the ones found by state-of-the-art approaches, we inspect which types of gadgets
and instructions are used in the generated chains. To this end, we analyze each
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valid chain found during our experiment in Sect. 5.2. Since P-SHAPE found only
invalid chains that crashed the program, we exclude it from this experiment.

Table 3. Statistics over all valid chains generated during experiments in Sect. 5.2.

SGC P-SHAPE angrop ROPium ROPgadget Ropper

avg. instructions 5.9 - 2.9 2.4 2.0 2.6

gadgets w/ mem. write 9% - 7% 6% 3% 14%

9% - 0% 0% - 0%

gadgets w/ mem. reads 30% - 7% 0% 0% 0%

32% - 0% 0% - 0%

CF types

ret 68% - 100% 97% 100% 100%

call MEM 10% - 0% 0% 0% 0%

call REG 20% - 0% 3% 0% 0%

jmp REG 2% - 0% 0% 0% 0%

As visible in Table 3, SGC’s gadgets contain on average almost six instructions,
whereas the other tools use two to three instructions per gadget. Further, SGC is
the only approach that makes use of explicit memory reads and writes (exclud-
ing instructions such as push and pop); all other tools only use it in the case
of execve to place the string /bin/sh into the memory. Similarly, most of the
tools rely exclusively on return-oriented gadgets; only ROPium uses call-oriented
programming for 3% of its gadgets. Contrary, SGC only uses return-oriented pro-
gramming in 68% of the cases, while it deploys call and jump-oriented gadgets
in 32%. In summary, SGC has on average longer gadgets, uses more memory
reads/writes, and has a significantly higher amount of non-return-oriented gad-
gets; in short, it includes gadgets specific to the target with side effects that are
disregarded by other approaches due to their generic heuristics.

Table 4. SGC’s timings for initial disassembly and chaining.

Disassembly Chaining Total

mprotect 1845 s 363 s 2207 s

mmap 1617 s 2667 s 4284 s

execve 1845 s 494 s 2338 s

Another relevant aspect is SGC’s runtime (cf. Table 4). The disassembly step
is comparably slow; the time required for instruction lifting, encoding, and SMT
solving is significantly lower. Our disassembly relies on a combination of Binary
Ninja and Miasm: we first analyze the whole binary and disassemble then individ-
ual functions in Miasm. As it is not a focus of this work, we consider improving
our disassembly component as future work. Only for mmap, finding the chain
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takes significantly more time since the SMT solver has to find a valid chain that
prepares six function arguments. For reference, the other tools find a chain on
average within 319s. However, this ignores the runtime when they found no chain
(e. g., Ropper hit the timeout of 24h twice), which was often the case, especially
for mmap. In summary, SGC finds a valid chain within minutes.

5.6 SGC’s Configuration

After successfully answering all research questions, we would like to give a better
intuition of the configuration parameters relevant for SGC. As described before,
our approach is probabilistic: it randomly samples only a small subset of gadgets.
As a result, the chosen subset may not be sufficient to generate a chain that
fulfills the postconditions. We can select another subset of the same size or a
larger number of gadgets to overcome this. The latter, however, increases the
time required by the SMT solver to decide the chain synthesis problem. To
get a better feeling for this trade-off, we vary the chain length and number
of sampled gadgets and analyze how often the solver succeeds in deciding the
synthesis problem, i. e., it finds a chain or returns UNSAT within one hour. For
each configuration, we run the solver ten times with different seeds such that
diverse gadgets are sampled. We do this for all target programs from Sect. 5.2 and
count how often the solver finds an answer or timeouts in the process of finding
chains for mprotect. In total, we perform 50 independent runs (ten different
seeds for five different targets) for each configuration.

Table 5. Number of gadget chains the solver decided (i. e., considered SAT or UNSAT) vs.
timeouts when building a chain to mprotect for the targets in Sect. 5.2 with ten different
seeds each. Format is #Decided by SMT solver/#Timeout. We color the prevalent
outcome.

Chain Length

1 2 3 4 5 6 7 8

#Gadgets 100 50/ 0 50/ 0 49/ 1 31/ 19 24/ 26 16/ 34 15/ 35 12/ 38

300 50/ 0 50/ 0 37/ 13 20/ 30 13/ 37 10/ 40 7/ 43 6/ 44

500 50/ 0 44/ 6 31/ 19 16/ 34 10/ 40 8/ 42 5/ 45 4/ 46

1000 50/ 0 31/ 19 25/ 25 11/ 39 9/ 41 2/ 48 0/ 50 0/ 50

As Table 5 shows, the chain length and the number of gadgets determine
the SMT solver’s performance: For a small number of gadgets and chain length
of 1, the solver always finds an answer. However, for longer chains or more
sampled gadgets, the number of timeouts increases. While the solver can decide
some chains of length six or higher, it increasingly triggers the timeout of one
hour. Similarly, for a larger gadget pool (e. g., 1000 gadgets), the solver already
struggles for chains of length three. While the strategy of randomly sampling a
small number of gadgets proved effective, an attacker can always increase the
number of gadgets and set higher timeouts for the SMT solver.
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6 Discussion

Limitations of SGC. While SGC has proven overall effective, various aspects can
be improved: (1) Our currently used disassembly is naive since we only consider
regular instruction offsets. As an improvement, we can search unaligned gadgets
since any sequence of bytes can be interpreted as instructions on x86-64. (2)
The SMT solver is the most significant performance bottleneck of our design as
it may require a large amount of time to identify valid gadget chains. However,
as our evaluation shows, randomly selecting a subset of gadgets provides an
effective strategy to reduce SGC’s runtime. In this scenario, an UNSAT provided
by the SMT solver is not a formal proof that no gadget chain exists, as it only
proves that no chain for the selected subset of gadgets exists.

Mitigations. To prevent exploitation, various mitigations have been pro-
posed. (1) W^X prevents execution of injected code, however, it is ineffective
against code reuse attacks and thus SGC. (2) Address space layout randomization
(ASLR) shuffles the program’s memory layout such that an attacker cannot rely
on addresses. SGC requires only the base address of the code section and does not
require shared libraries to find valid gadget chains, thus a single information leak
suffices. (3) Lastly, control-flow integrity (CFI) prevents the redirection of control
flow to arbitrary code locations. This severely hampers code-reuse attacks such
as SGC because only specific gadgets can be chained together. However, related
work has shown that even fine-grained CFI is insufficient to prevent code-reuse
attacks in general [11,24]. We believe that an attacker could add constraints
modeling the enforcement policies such that the SMT solver will only select
gadget chains that pass the CFI enforcement policy. We leave this as interesting
future work.

7 Related Work

After initial techniques in the domain of code-reuse focused on functions
from libc [30], the concept was generalized to re-use small snippets of exist-
ing code [14,26]. These small snippets are often chained via ret instruc-
tions (ROP) [26], but other control-flow transfers work as well (JOP [3,6]
and COP [4,9]). Mitigations such as ASLR have been shown to be insuffi-
cient [29]. Moving forward with new mitigations such as control-flow integrity
(CFI) [1], even more advanced approaches have been proposed, e. g., counter-
feit object-oriented programming (COOP) [22] or data-oriented programming
(DOP) [10]. Even fine-grained CFI solutions fail to stop attackers from finding
gadget chains [35].
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In parallel, various techniques to automate the cumbersome task of identify-
ing suitable gadgets have been proposed. Early approaches use pattern match-
ing to search for desired gadgets [13,19]. Other approaches tackle the task of
automating the attack itself: One of the earliest approaches, Q [23], uses soft-
ware verification methods instead of pattern matching to achieve this goal. Using
identification and chaining of gadgets similar to Q, Wollgast et al. [37] automate
COP, which allows them to bypass coarse-grained CFI implementations. Tack-
ling the problem imposed by fine-grained CFI solutions, Ispoglou et al. [11] pro-
pose an approach, BOPC, which automates data-only attacks. Further improving
this avenue, Schwartz et al. [24] propose a generic approach, Limbo, capable of
constructing chains using ROP, JOP, COP, or DOP. Their approach is similar
to ours in the spirit of maintaining a generic approach to code-reuse attacks.
However, their focus is on the construction of CFI-compatible gadget chains.
Internally, their search relies on concolic execution and hard-coded heuristics.
In contrast, our approach does not tackle the problem of identifying CFI-aware
gadgets but maintains generality without relying on hard-coded heuristics. Fur-
ther, Limbo only works for 32-bit Linux executables, which limits their real-world
applicability. As no code is published, we cannot evaluate against Limbo.

8 Conclusion

In this paper, we presented a generic and flexible approach to automate the task
of finding gadget chains. With our prototype implementation, we have shown
that SGC outperforms state-of-the-art tools. It not only finds gadget chains where
all other approaches fail but also allows to model complex constraints.

Acknowledgements. This work was supported by the German Research Foundation
(DFG) within the framework of the Excellence Strategy of the Federal Government
and the States—EXC 2092 CaSa—39078197.

A Modeling

Byte-wise memory reads and writes are modeled using single select and store
operators, respectively. Larger reads are modeled by concatenating multiple
select expressions, which we define recursively in terms of smaller read opera-
tions. Reads smaller than 64-bit into a 64-bit register are zero-extended by using
concat with the zero bit vector bv0. Larger writes are similarly modeled using the
composition of multiple store expressions. Table 6 shows memory accesses of var-
ious sizes. Given an array m, address k and value v and bit size n ∈ (8, 16, 32, 64),
we use the names mem readn(m, k) and mem writen(m, k, v) to substitute the
longer SMT expressions from these tables.
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Table 6. Encoding of memory reads and writes (m: memory, k: address, v: value).

Name SMT encoding

mem read8(m, k) select(m, k)

mem read16(m, k) concat(mem read8(m, k), mem read8(m, k + 1))

mem read32(m, k) concat(mem read16(m, k), mem read16(m, k + 2))

mem read64(m, k) concat(mem read32(m, k), mem read32(m, k + 4))

mem write8(m, k, v) store(m, k, v0:7)

mem write16(m, k, v) mem write8(mem write8(m, k, v0:7), k + 1, v8:15)

mem write32(m, k, v) mem write16(mem write16(m, k, v0:15), k + 2, v16:31)

mem write64(m, k, v) mem write32(mem write32(m, k, v0:31), k + 4, v32:63)

B dnsmasq CVE-2017-14493

In the following, we analyze the dnsmasq bug in more detail. The stack-based
buffer overflow in dnsmasq is caused by the absence of a length check of the
data copied to a static buffer on the stack. Figure 2 shows the vulnerable call
to memcpy in function dhcp6 maybe relay. Sending a malicious DHCPv6 packet
allows to gain control over the instruction pointer by overflowing the mac buffer
of static size DHCP CHADDR MAX (16) in the state structure present on the stack.

Fig. 2. Vulnerable memcpy in file rfc3315.c, which overflows the mac buffer in state.

The proof-of-concept (PoC) provided alongside the bug report [25] builds
up such a DHCPv6 packet containing an OPTION6 CLIENT MAC option holding
data of excessive length. While the PoC overwrites the instruction pointer with
a dummy value, injecting an arbitrary amount of bytes is possible. As long as
the stack is not exhausted, the packet’s content is copied and remains untouched
until the instruction pointer is overwritten.

In order to synthesize a gadget chain, the information needed to specify
preconditions and postconditions is gathered by extracting the program state
before hijacking the control flow through GDB. Table 7a shows the preconditions
set for dnsmasq. The initial ret instruction, which redirects the control flow
to the chain’s first gadget (gadget 0), is specified by preconditioning rip. The
stack pointer rsp points to the part of the controlled buffer, where the gadget
chain will be copied. In the logical formula, this stack area is a free variable.
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Table 7. Preconditions and postconditions used for dnsmasq. Registers not mentioned
in the preconditions are free variables, i. e., registers an attacker controls and can set
to an arbitrary value.

(a) Preconditions

Register Value

rip 0x33dfb

rax 0x223

rcx 0x0

rdx 0x5a

rdi 0x22

r8 0x7fffffffe0e0

r9 0x0

r10 0x7fffffffbc50

(b) Postconditions

Register Value

rip 0x461d0

rax 0x3b

rsi 0x0

rdx 0x0

rdi &"/bin/sh"

Since we want to execute a system call to execve to spawn a shell,
the final register values which the gadget chain needs to reach are speci-
fied accordingly. Table 7b shows the postconditions in preparation for calling
execve(&"/bin/sh", 0, 0). Here, rip holds the address of a syscall instruc-
tion available in the program. Using the default configuration described in
Sect. 5.1, SGC finds a gadget chain consisting of four gadgets within approxi-
mately 8m. While most gadgets are straightforward, gadget 3 (shown in Fig. 3)
writes a value to the stack outside the attacker-controlled buffer, a side effect that
does not harm the chain. The arithmetic operations of the first four instructions
do not change register rax’ value of 0. In line 6, the lea instruction is used to
add 0x5 to the value present in rbp = 0x55555559a1cb. The resulting address,
0x55555559a1d0, is a syscall instruction; the address is placed on the stack
at address 0x7fffffffe240 present in register rbx. As this address is writable
memory, no harm results from this side effect.

As mentioned earlier, the PoC crafts a rogue DHCPv6 packet. In order to
construct the payload with our synthesized gadget chain, the length parameter
is adjusted and the dummy value is replaced with the data of the gadget chain.
Sending this packet to the dnsmasq DHCP server successfully spawns the shell.

Fig. 3. gadget 3 of the gadget chain used to spawn a shell in dnsmasq.
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