é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

U Can’t Debug This: Detecting JavaScript
Anti-Debugging Techniques in the Wild

Marius Musch and Martin Johns, TU Braunschweig

https://www.usenix.org/conference/usenixsecurity21/presentation/musch

This paper is included in the Proceedings of the
30th USENIX Security Symposium.
August 11-13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium
is sponsored by USENIX.

+ 8 ';\-_. - —
R b »

U Can’t Debug This: Detecting JavaScript
Anti-Debugging Techniques in the Wild

Marius Musch and Martin Johns
TU Braunschweig, Germany

Abstract

Through security contests such as Pwn20wn, we are con-
stantly reminded that no complex piece of software should
ever be considered secure. As we execute untrusted code in
our browser every day, browser exploits written in JavaScript
remain a constant threat to the security of our systems. In
particular, evasive malware that detects analysis systems and
then changes its behavior is a well-known problem.

However, there are also anti-debugging techniques that
interfere with the manual analysis of a website in a real
browser. These techniques try to prevent, or at least slow
down, any attempts at manually inspecting and debugging the
JavaScript code of a website. For example, such a technique
could constantly trigger breakpoints at random locations to
effectively hinder single-stepping while debugging the code.
More cunningly, it could also find out whether the browser’s
integrated Developer Tools are open by using certain side-
channels available in JavaScript. With this knowledge, it is
possible to subtly alter or suppress any malicious behavior
while under analysis.

In this paper, we systematically explore this phenomenon.
To this end, we introduce 9 anti-debugging techniques and
discuss their advantages and drawbacks. We then conduct a
large-scale study on 6 of them, to investigate the prevalence
of these techniques in the wild. We find that as many as 1 out
of 550 websites contain severe anti-debugging measures, with
multiple of these techniques active on the same site. Moreover,
we present a novel approach based on a deterministic website
replay and a comparison of JavaScript code coverage. The
approach can automatically detect the remaining 3 timing-
based anti-debugging techniques, which use side-channels
to learn if the DevTools are open. In a targeted study on
2000 websites with anti-debugging techniques, we discover
over 200 of them indeed execute different code when under
analysis.

1 Introduction

In our modern, interconnected world, the Web platform is
one of, if not the main way our computers interact with the
outside world. We use our browsers to visit new websites
almost every day, some of which might not be trustworthy at
all. Nevertheless, we visit them and execute their JavaScript
code on our computers, while relying on the browser to keep
us safe. Yet browsers are incredibly complex applications,
e.g., in 2020 the Chromium browser had over 25M lines of
code [3]. Unsurprisingly, some of these lines have bugs that
can have severe security implications [e.g., 8—11]. Therefore,
detecting and analyzing JavaScript malware is a crucial task
to maintain the security of the Web platform.

Heavy obfuscation and the ability to generate new code
during runtime makes a fully static analysis of malicious
JavaScript largely infeasible. Therefore, effective detection of-
ten relies on a dynamic analysis or a combination of both [e.g.,
6, 7, 26, 43]. This then led to a shift towards evasive mal-
ware which abuses implementation differences between a real
browser and dynamic analysis systems, leading in turn to new
approaches to deal with such evasive techniques [25].

Yet one, so far, overlooked scenario is the manual analysis
of websites using a normal browser, since we can only combat
evasive malware deceiving our automated tools if we can man-
ually inspect and learn from it. Unfortunately, this scenario
opens up new paths for inventive attackers to interfere with
the analysis by creating anti-debugging techniques targeting
humans using real browsers.

Over the past few years, there were already a few reports of
such techniques being used for malicious purposes. For exam-
ple, in their 2018 paper on cryptojacking Konoth et al. [30]
discovered one particular script that stops with the mining of
cryptocurrency as soon as the browser’s integrated Developer
Tools are opened. More recently, in June 2020 the security
company Sansec found online stores infected with a script
that records credit card information while it is entered and
then sends it to the attacker’s servers. However, if at any point
while visiting an affected domain someone opens the Dev-

USENIX Association

30th USENIX Security Symposium 2935

Tools, the malicious script detects this, stops sending out its
data, and sets a cookie to never activate the skimming for this
particular user again [44]. These occurrences demonstrate that
some attackers are aware of these anti-debugging techniques
and already abuse them in the wild to thwart with manual
analyses.

In this paper, we introduce 9 different anti-debugging tech-
niques and present two studies on this phenomenon. In our
large-scale study of the 1 million most popular websites, we
investigate the prevalence of 6 basic techniques, like disabling
the console or constantly triggering breakpoints to hinder an
inspection. We find that their prevalence varies widely be-
tween the different techniques themselves, their aggressive-
ness (a few vs. 100 breakpoints), their distribution vectors
(first vs. third-party code), and their presence on the site (front
vs sub-page). Moreover, we also observe that these techniques
are more prevalent on certain website categories related to
suspicious, illegal, or outright malicious content.

We then follow up with a second study of the 2000 sites
with the highest severity of these basic techniques. In this
targeted study, we investigate the presence of 3 sophisticated
techniques, which utilize timing side-channels to detect at-
tempts at analyzing the website. To detect these elusive tech-
niques, we use a generic approach that is based on measuring
code coverage during multiple, deterministic replays of the
same page. This approach of comparing executions recorded
in multiple environments is a proven concept from the area
of malware detection in native executables [e.g., 2, 28, 34].
However, we instead use this idea to replay a whole website’s
code to reveal anti-debugging techniques written in JavaScript
which target a human analyst. In this study, we find that about
12% of these suspicious sites execute different code under
analysis.

To summarize, we make the following contributions:

¢ Collection and systematization of 9 anti-debugging tech-
niques

» Large-scale study of 6 basic techniques with our auto-
mated framework to measure their prevalence and sever-
ity in the wild

e Targeted study of 3 sophisticated techniques using a
generic approach based on deterministic web page replay
and code convergence

2 Background and Scenario

This section briefly describes how to inspect and debug
JavaScript code in a browser, followed by the general sce-
nario and what we consider in and out of scope for this paper.

2.1 Debugging JavaScript Code

While previously developers and malware analysts might have
relied on browser extensions such as FireBug [41] to inspect a
website, nowadays all browsers ship with powerful, integrated
Developer Tools [17], or DevIools for short. At the time of
writing the DevTools of Chromium shipped with 24 different
tabs, each focusing on a different feature. In the following, we
will briefly introduce the four most useful of these features.

The elements tab shows the DOM tree of the currently
displayed page. It automatically updates all elements if
JavaScript code manipulates them and all elements can also
be changed by the user and directly affect the rendered page.
The sources tab not only allows the inspection of the whole
client-side code but also includes a full debugger. With it,
the user can set breakpoints anywhere, step through the code,
inspect the call stack and variable scopes, and even change
the value of variables on the fly. The console tab acts like
an interactive shell, which allows you to execute arbitrary
JavaScript code in the top-level scope of the currently loaded
page. If execution is currently suspended at a breakpoint, all
code executed in the console will run in the scope of the
breakpoint’s location instead. The network tab, like the name
suggests, allows full inspection of all network traffic including
the headers and timing data. On top of that, the DevTools offer
many advanced features like measuring site performance with
a stack-based profiler, creating a heap snapshot to investigate
memory leaks, and the ability to measure and inspect code
coverage.

Using any other analysis tool that is not part of a browser,
e.g., static analysis or executing a single script in isolation is
usually not an option if one wants to obtain reliable results,
due to multiple reasons: First of all, JavaScript code written
for the Web expects many objects that are not part of the
language specification, like document or location. Moreover,
scripts often load additional code on the fly, e.g., one particu-
lar script might generate code for an iframe with a URL as the
source and add that to the DOM. The browser then requests
the content for that iframe over the network, which might con-
tain additional script code which then again loads additional
code via an xMLHttpRequest. Previous research has shown
that such patterns of deep causality trees in script inclusions
are a common occurrence today [31, 32]. Only a real browser
is able to correctly handle the inherent complexity of modern
Web applications and thus only a real browser can be used to
accurately inspect and analyze JavaScript code on the Web.

2.2 Threat Model and Scope

Throughout this paper, we consider the following scenario: A
user, also referred to as the analyst, manually visits a given
website in a real browser to analyze and interact with the
website’s code. In particular, the user intends to browse the
source code of that website, set breakpoints and step through

2936 30th USENIX Security Symposium

USENIX Association

the code, and inspect variables and functions. On the other
hand, the website does not want to be analyzed and contains
evasive measures to detect and hinder or, at least, slow down
and deter any attempts at inspection.

We consider the browser’s integrated DevTools the tool of
choice for the user to achieve their analysis goals. As pre-
viously outlined, the DevTools are not only full of useful
features, but with their integration into the browser also the
only way to correctly execute the JavaScript code in the first
place. Moreover, using them also avoids the problem of eva-
sive malware potentially detecting the inspection by noticing
it does not run in a real browser.

Inscope In general, the underlying problem in this scenario
is that the analyst can not fully trust the capabilities used dur-
ing a live inspection, e.g., any logged output during execution,
as the website might have manipulated the logging functional-
ity on-the-fly. Furthermore, if the website is able to detect the
presence of the inspection, it could also alter or completely
suppress any malicious activity to appear benign during anal-
ysis. In this paper, we investigate all these techniques that
affect the dynamic analysis of a website, like altering built-in
functions or detecting the presence of a debugger. We refer to
such techniques as anti-debugging techniques from now on.

Out of scope Since we only focus on techniques that are
affecting the code at runtime, all static code transformation
techniques, in particular obfuscation, are out of scope for this
paper. While these can certainly be a powerful tool to greatly
slow down manual analysis, especially when combined with
some of the anti-debugging techniques introduced in the fol-
lowing, these static techniques have already been extensively
studied in the past [e.g., 4, 14, 61, 62]. Similarly, all tech-
niques that do not affect a real browser but rather aim to break
sandboxes or other analysis systems, e.g., by intentionally us-
ing new features or syntax not yet supported by these systems,
are out of scope as well.

3 Basic Anti-Debugging

In this section, we will introduce 6 basic anti-debugging tech-
niques (BADTs) with three different goals: Either to outright
impede the analysis, or to subtly alter its results, or to just
detect its presence. During its introduction, we will give each
technique a short name, e.g., ModBuilt, by which it will be
referenced throughout the remainder of the paper and will
also provide a link to a mention of this technique on the
Web. Additionally, we provide a testbed' with one or two
exemplary implementations for each technique so that the
interested reader can experiment with each technique while
reading this chapter. Finally, we will also briefly describe
possible countermeasures for each BADT to give a better
impression of how effective they are.

! Available at https://js-antidebug.github.io/

3.1 Impeding the analysis

These first three techniques all just try to impede attempts
at debugging the website. They are generally not very effec-
tive but still might cause an unsuspecting user to give up in
frustration.

Preventing Shortcuts (SHORTCUT) Before any meaning-
ful work can begin, the analyst first needs access to the full
client-side code of the website and thus the following BADT
simply tries to prevent anyone from accessing that source
code. The quickest way to open the DevTools is by using
a keyboard shortcut. Depending on the browser and plat-
form there are multiple slightly different combinations to
consider, e.g., for Chrome on Windows F12, Ctrl+Shift+I,
and ctrl+shift+J all work. As JavaScript has the ability to
intercept all keyboard and mouse events as long as the website
has the focus, these actions can be prevented by listening for
the respective events and then canceling them, as shown in
Figure 1 [52]. This obviously can not prevent someone from
opening the DevTools by using the browser’s menu bar.

Besides the advanced DevTools, common browsers also
have a simple way to just show the plain HTTP response of
the main document. This can usually be accessed by right-
clicking and selecting "View page source" from the context
menu, or directly with the Cctr1+U shortcut. Again, both these
actions can be prevented by listening for these events and then
canceling them. There are many ways to easily bypass this,
e.g., by prefixing the URL with the view-source: protocol or
opening the sources panel of the DevTools.

window.addEventListener ("keydown", function (event) {
if (event.key == "F12") {
event.preventDefault (); return false;
P

Figure 1: Disabling the F12 shortcut

Triggering breakpoints (TRIGBREAK) The debugger
statement is a keyword in JavaScript that has the same ef-
fect as manually setting a breakpoint [12]. As long as no
debugger is attached, i.e., the DevTools are closed, the state-
ment has no effect at all. This behavior makes the statement
a perfect tool to only interfere with debugging attempts. The
technique can be as simple as just calling the debugger in a
fast loop over and over again. As a simple measure to counter
this technique, the DevTools of popular browsers have the
option to "Never stop here", effectively disabling only the
debugger statements while still allowing breakpoints in gen-
eral. However, many variations exist which make it harder
to reliably block it, e.g., constantly creating new anonymous
functions on the fly instead of always hitting the breakpoint
at the same location [46]. On the other hand, this can still be
countered by specific code snippets that remove all debugger
statements on the fly, like the Anti Anti-debugger script [60]
for the Greasemonkey browser extension [1].

USENIX Association

30th USENIX Security Symposium 2937

https://js-antidebug.github.io/

Clearing the Console (CONCLEAR) While the sources
panel for the DevTools offers the ability to inspect and change
variables in the scopes of the current breakpoint, the console
can be very useful in this regard as well. For example, it al-
lows one to easily compare two objects or to run a simple
statement at the current location of the suspended execution.
However, it is possible to make the console unusable by con-
stantly calling the console.clear function [51]. If done fast
enough, this makes it near impossible to inspect the output
and thus the value of variables during runtime without setting
breakpoints with the debugger. However, this technique can
be circumvented by enabling "Preserve log" in the DevTools
options or by disabling the clear function by redefining it to
an empty function.

3.2 Altering the analysis

Instead of only blatantly trying to impede the analysis, the
following technique can also subtly alter what an analyst
observes during debugging attempts.

Modifying Built-ins (MODBUILT) As JavaScript allows
monkey patching, all built-in functions can be arbitrarily re-
defined. For instance, a popular music streaming service for
a while had modified the alert function, which many bug
bounty hunters use to test for XSS, to secretly leak all client-
side attempts to trigger an XSS attack to their back-end, as
shown in Figure 2.

// Wra
- externally 1
(function(fn) {
window.alert = function() {
var args = Array.prototype.slice.call (arguments);
_doLog('alert', args);
return fn.apply(window, args)
ti
} (window.alert));

Figure 2: This code including the comment was found on
spotify.com in 2018 [59]. The _doLog function reports the
current URL along with a full stack trace to their backend any
time the alert function is called.

As this example demonstrates, the possibilities to redefine
built-in functions and objects to make them behave differently
are basically endless. Furthermore, there are many legitimate
use cases, like polyfills that provide a shim for an API not
supported by older browsers. Since we are only interested in
functions that a human analyst is likely to use in the DevTools
console, we focus our search on modifications to the console,
String and JSON objects, and their respective functions. Fig-
ure 3 shows a somewhat contrived example of how malicious
code could hide itself [16]. Note that this technique can also
be used to impede the analysis instead, e.g., by redefining
all functions like 1og and info to an empty function [46, 49].
A possible countermeasure is to save a reference to every

native function one intends to use before executing any of the
malicious code, a tactic popular in JavaScript rewriting and
sandboxing literature [e.g., 39, 42].

let original = console.log;

console.log = function(arg) {
if (arg == "shellcode") { arg = "benign code"; }
original (arqg); }

Figure 3: Redefining the log function to hide malicious code

3.3 Detecting the analysis

Finally, the most subtle of all techniques only try to detect the
presence of the analysis. In contrast to the previous technique
which directly altered the behavior of built-in functions an
analyst would use, these techniques instead aim to alter the
control flow of their own code. This way, attackers could
suppress executing malicious code for any user that opens the
DevTools or had them previously open on the same domain.

Inner vs. OuterWidth (WIDTHDIFF) By default, opening
the DevTools either splits the browser window horizontally or
vertically. In JavaScript, it is possible to obtain both the size
of the whole browser window including all toolbars (outer
size) and the size of the content area without any toolbars (in-
ner size). Thus by constantly monitoring the outerWidth and
innerWidth properties of the window object, we can check if
the DevTools are currently open on the right-hand side. The
same works if the DevTools are attached to the bottom, by
comparing the height instead, as shown in Figure 4. This is
the method used by the popular devtools-detect package [47]
that, at the time of writing, already had over 1000 stars on
Github and is thus probably often used in the wild. This is
also the technique used by the credit card skimming case [44]
from the introduction.

setInterval (() => {
if (outerWidth - innerWidth > threshold
outerHeight - innerHeight > threshold) ({
//DevTools are open!
}
}, 500);

Figure 4: Monitoring the window size to detect the DevTools

However, this technique does not work if the DevTools are
undocked, i.e., open in a separate, detached window. Addi-
tionally, this technique will report a false positive if any other
kind of sidebar is opened in the browser.

Log Custom Getter (LOGGET) Exactly because of the
just described drawbacks of the WIDTHDIFF technique, some
developers are interested in more reliable alternatives. A
StackOverflow question titled "Find out whether Chrome con-
sole is open" [50] back from 2011 so far received 130 upvotes

2938 30th USENIX Security Symposium

USENIX Association

and 14 answers. While many of the suggested approaches
have stopped working over the years, some answers are still
regularly updated and present working alternatives.

In particular, for at least the last three years, some working
variations of what we call the LOGGET technique existed. The
technique works by creating an object with a special getter
that monitors its id property and then calling console.log on
it. If the DevTools are open, its internals cause it to access the
id property of every logged object, but if they are closed, the
property is not accessed. Therefore, this getter was a reliable
way to determine if the DevTools are open. While the origi-
nal approach stopped working sometime in 2019, someone
created a variation of it that uses requestAnimationFrame to
log the element with the custom getter which still works as of
time of writing. As an alternative, it is also possible to over-
write the toString function of an arbitrary function and then
log that function, as shown in Figure 5. Since the DevTools
internally also use toString to create the printed output, we
know that the DevTools are opened whenever this toString
function is called.

var logme = function() {};

logme.toString = function() {
//DevTools are open!

}

console.log('"\%c', logme);

Figure 5: Approach from 2018 to detect the DevTools

As long as one of these variations continues to work, this
method is a very reliable way to detect if the DevTools are
open, as it also works if they are detached or already open
when the website is loaded. There is no real countermeasure
except to remove all logging functions of the console object,
an invasive step which by itself also might get detected.

3.4 Systematization I

To put the BADTSs seen so far into context, we examine them
based on four properties: Effectiveness, stealth, versatility,
and resilience. An effective technique has a high likelihood
of activation and thus causing an impact on the analyst. As
such, LOGGET is an effective technique while SHORTCUT
might never really affect anyone. A stealthy technique wants
to remain unnoticed, i.e., WIDTHDIFF is a stealthy technique
(although the measures it takes upon detection of the Dev-
Tools might be not so stealthy) while TRIGBREAK is the very
opposite of stealthy. A versatile technique can be used to
achieve many different outcomes, as opposed to something
very specific. Therefore, MODBUILT is a versatile technique
as it can redefine a built-in function to anything else and
LOGGET can react in many different ways if it detects the De-
vTools. A resilient technique is not easily circumvented, even
if the user is aware of its existence. For example, LOGGET is
aresilient technique because there is no good countermeasure,

while DEVCUT was easily bypassed by using the menu bar.
Table 1 shows the full results of our systematization for each
technique. As all four properties are desirable from the per-
spective of an attacker, the techniques WIDTHDIFF, LOGGET,
and MODBUILT offer the most potential.

Table 1: Systematization of BADTSs. The goals are Impede,
Alter, and Detect. A filled circle means the property fully
applies, a half-filled circle means it applies with limitations.

Technique Goal Effective Stealthy Versatile Resilient
SHORTCUT I O O @) O
TRIGBREAK 1 [} O @) ©
CONCLEAR 1 © O O O
MODBUILT A/l [} © [} ©
WIDTHDIFE D [)) () (] @)
LOGGET D [) © [[J

4 Large-Scale Study of BADTSs

The previously mentioned devtools-detect package and also
the question on StackOverflow already indicated a certain
interest in anti-debugging techniques, in particular in detect-
ing whether the DevTools are opened. However, so far, there
has not been a comprehensive study on the prevalence of
these techniques in the wild. In this section, we will therefore
present a fully automatic methodology to detect each of the
BADTS from the previous section and report on the results of
our measurement on 1 million web sites.

4.1 Study I - Methodology

In the following, we will briefly outline how we can detect
the presence of each technique during a single, short visit to
the website. For this, we use the fact that all basic techniques
have an obvious "signature" that is easy to detect, e.g., log-
ging an object with special properties. While the detection
methodology presented in this section is specifically tailored
to each technique and only able to detect exactly them, this
methodology is simple, effective, and scales very well. Note
that in contrast to this approach, we will also introduce a
more generic approach to detect sophisticated anti-debugging
techniques in the second half of the paper.

In general, we are using a real Chromium browser for our
experiments which is controlled from Node.js via the De-
vTools Protocol [5]. This means we have many advanced
capabilities, e.g., injecting JavaScript into each context before
the execution of any other code occurs or programmatically
controlling the behavior of the debugger. Yet for any loaded
website, we still appear and behave like a normal browser.

ShortCut To detect intercepted key presses, we first collect
all event listeners via the getEventListeners function. For
each collected keydown or contextmenu listener, we create an

USENIX Association

30th USENIX Security Symposium 2939

artificial keyboard or mouse event to imitate the shortcut or
right click. We pass this event to the listener and then check if
the defaultPrevented property of the event was set, i.e., the
respective normal behavior was blocked by this listener.

TrigBreak By registering the Debugger.paused event of the
DevTools protocol, we can observe the location of each trig-
gered breakpoint. We log this data and immediately resume
execution, to not reveal the presence of the debugger itself.

ConClear To check for attempts at constantly clear-
ing the console, we first register a callback to the
Runtime.consoleAPICalled event of the DevTools protocol.
This API notify us of all invocations of functions of the
console object and thus allows us to observe how often
console.clear is called.

ModBuilt We inject JavaScript code into each website
which is guaranteed to execute before any of the website’s
code. Our injected code then creates a wrapper around each
object and all of its properties we want to observe. This wrap-
per will notify our back-end if someone overwrites them or
one of their properties. We ignore code that only adds new
properties that do not overwrite existing functionality, e.g., a
polyfill that adds a new function like String.replaceAll to
browsers that do not yet support this feature.

WidthDiff We use a similar wrapper as described in MOD-
BUILT, only this time we monitor for read accesses instead
of writes to the property innerWidth and its siblings. Since
we expect that tracking and fingerprinting scripts, in particu-
lar, might be interested in some of these values to determine
the screen resolution of all visitors, we only flag scripts that
access all four properties.

LogGet Similarly to the CONCLEAR technique, we observe
all interactions via the console APIs. As the technique re-
quires one to log some specifically crafted objects that are
unlikely to be logged during normal operations of a website,
we can look out for those. Thus, if we observe a format string
logged together with a function that has a custom toString
function like in Figure 5, we flag the page. The same applies
if we observe the logging of an object that has an id property
which is a function instead of a value.

Triggering breakpoints or clearing the console once or
twice is rather harmless, they only become a problem if they
happen constantly. Therefore, for all these 6 BADTs we not
only detect if they happen but also how often per script. One
disabled shortcut could be a coincidence, but disabling all
five within the same piece of code is most likely a deliberate
attempt at preventing access to the source. For this, we only
count occurrences in the main frame of the loaded page, since
(usually rotating) advertisements should not influence the
numbers. Moreover, many techniques lose their effectiveness
in iframes, e.g., SHORTCUT would only prevent the shortcut
while the iframe is focused. We aggregate all numbers by site,
i.e., if a given technique is present on multiple (sub-)pages

of the same site, we only count it once. The same applies if
one site has multiple different scripts that trigger the same
technique. In all cases, we only use the most significant oc-
currence of each technique within a site for further analysis,
e.g., the script that cleared the console most often.

4.2 Study I - Experiment Setup

For our large-scale study, we visited the 1 million most popu-
lar websites according to the Tranco list [33] generated on 21
Dec 2020. We started 80 parallel crawlers using Chromium
87.0.4280 on 22 Dec and finished the crawl three days later.

On each page, our crawler waits up to 30 seconds for the
load event to trigger, otherwise we flag the site as failed and
move on. After the load event, we wait up to 3 more seconds
for pending network requests to resolve to better handle pages
which dynamically load additional content. Finally, we then
stay for an additional 5 seconds on each loaded page, so that
techniques that take repeated actions like TRIGBREAK or
WIDTHDIFF have enough time to trigger multiple times.

Of all the sites of the initial 1 million, about 15% could not
be visited at all, despite having used the most recent Tranco
list. Of these, about 8% were due to network errors, in partic-
ular, the DNS lookup often failed to resolve. In another 4%,
the server returned an HTTP error code and the remaining 3%
failed to load before our 30 seconds timeout hit. In total, we
successfully visited around 2.8M pages on about 840k sites,
where site refers to an entry in the Tranco list which then
consists of one or more pages. We did not only visit the front
page because research on the cryprojacking phenomenon has
shown that a common evasive technique is to not run any ma-
licious code on the front page to avoid detection during brief
inspections. In line with previous research [30, 40], we there-
fore additionally selected three random links to an internal
subpage and visited these as well.

4.3 Study I — Prevalence

First of all, we are interested in the general prevalence of
BADTs in the wild. As can be seen in Table 2, we can find
indicators of behavior resembling the six BADTSs on over
200k sites. The overwhelming majority of these are caused
by MODBUILT and WIDTHDIFF, which, judging from the
high numbers, seem to be common behavior also in benign
code. Moreover, we can see that visiting subpages did indeed
significantly increase the prevalence by about 17% compared
to only crawling the front pages. Interestingly, indicators of
the more desirable techniques (using the properties from our
systematization in Table 1) are also more often hidden in
subpages. Specifically, TRIGBREAK is a clear outlier here
and breakpoints occurred a lot more often only on subpages.

These results in Table 2 should only be seen as indicators
for behavior resembling those of the six BADTs. Next, we
analyze how confident we are for each occurrence that it is

2940 30th USENIX Security Symposium

USENIX Association

Table 2: Number of sites with indicators for each technique
and the increase from also visiting subpages.

Technique # Websites % Total # Subpages only
SHORTCUT 4525 0.53 818 (+22%)
TRIGBREAK 1128 0.13 502 (+80%)
CONCLEAR 3061 0.36 981 (+47%)
MODBUILT 101587 12.00 15345 (+18%)
WIDTHDIFF 114154 13.49 18615 (+19%)
LOGGET 3044 0.36 756 (+33%)
TOTAL 206676 24.42 30494 (+17%)

used in an intentional and malicious manner. As previously
stated, there is a huge difference between clearing the console
once and clearing it 50 times within a few seconds. On the
other hand, it makes little difference anymore if it is cleared 20,
50, or even 1000 times which are all highly unusual and hard
to cause by accident. In between those two extremes, there
is a window of values that are suspicious but not definitely
malicious, e.g., clearing it 5 times. As Figure 6 shows, for
many techniques about 50% of all detections were caused
by just a single occurrence. Looking at CONCLEAR, we can
see that of all sites that cleared the console at least once, only
about 4% cleared it between 6 and 10 times and only 1%
cleared it more than 10 times.

I 3 . 6-10 . >20
2 4-5 . 11-20
ShortCut
TrigBreak
ConClear
ModBuilt
WidthDiff
LogGet
0.0 0:2 0:4 0:6 0:8 1.0
Percentile

Figure 6: Occurrences within each BADTs grouped into 7
bins, e.g., all sites on which a technique triggered 11-20 times
share the same bin. The bins are only used for data visualiza-
tion and not for further analysis.

To compare indicators of different techniques, we first need
a normalized value that incorporates these insights from Fig-
ure 6. Therefore, we calculate the confidence score by tak-
ing the squared value of the percentile within that technique.
For example, if we visit a site and see one script that clears
the console twice, we would assign a confidence score of
0.6% = 0.36 to this script. On the other hand, if the same
script would trigger 30 times, we would assign a confidence
score of 0.95% = 0.9025 to it. The rationale behind this for-

mula is that the percentile encodes how often the number of
occurrences was observed compared to observations of the
same technique on other websites. Squaring this value then
puts more weight on the unusually high occurrences, e.g.,
when the console is cleared dozens of times, resulting in a
higher confidence that this usage is intentional and resembles
anti-debugging efforts.

Yet, we still have to consider that clearing the console is
by itself an uncommon occurrence, with only about 0.53%
of all sites behaving this way. A CONCLEAR event with low
confidence can still be more significant than e.g., MODBUILT
with a higher confidence score. Thus, we next calculate a
severity score, which combines the confidence score with the
inverse frequency of the techniques, i.e., the more common
a technique the less it increases this score. For this, we use
the Inverse Document Frequency (IDF) from the domain of
information retrieval and adapt it to count techniques instead
of word terms. Thus, the weights for each technique are cal-
culated as follows: /n(number of sites with any technique /
number of sites with given technique). This means that the
presence of CONCLEAR has a weight of 4.21 while MOD-
BUILT only has 0.71. We then multiply the confidence score
with these weights and build the sum over all techniques on
the site to obtain the final severity score. Overall, this score
considers that 1) some techniques are rarer than others, 2)
some sites use these techniques more aggressively than oth-
ers, and 3) combining different techniques on the same site is
more effective.

4.4 Study I - Results

Based on our severity score, we can now analyze the most
significant cases of anti-debugging in more detail. In this and
the following sections, we focus on the 2,000 sites with the
highest severity score, which represents approximately the
top 1% of all sites with any indicators. These sites all had a
severity score of 3 or higher, as shown in Figure 7. Moreover,
the same figure shows that more than two-thirds of these sites
had multiple BADTSs on the same site, with a few sites as many
as 5 simultaneously. On average, the severity score on these
2,000 sites was 4.63 and the average amount of techniques on
the same site was 2.28, as the raw numbers in Figure 8 show.

First, we wanted to see if there is a correlation between the
popularity of a website and the prevalence of BADTs. We
investigated this separately for each technique, to account for
their high variance in the total number of occurrences. As
shown in Figure 9, BADTs were slightly more prevalent in
the higher ranking and thus more popular websites, with the
notable exception of SHORTCUT.

Next, we analyzed the code provenance of the scripts we
found to be responsible for executing the BADT by distin-
guishing between first- and third-party scripts. However, it
should be noted that the following analysis based on the

USENIX Association

30th USENIX Security Symposium 2941

10 ® 1
° L)
9 o F) e 2
° > ° o ® 3
o

02 o, [) ® 4

8 e o G 9% 2~ R 00 ®09¢ °
3% % o2 % oS wlde o% % w“ oo ® 5

® oo 0(0»«. G o0 e o0 0 Qeo o o

> 7 o @ a(o.n»uo 10D 0@@Ie ® 00:(7 O BT eeeritH ¢
Fn
5 P Pehee @O TG e o 03D Mo Gicg 0 ®O © 0 0§ wegte
> (]
[x o’ct' R e n'g®
@100 R OGHRUD (003 o0 @Y OX M K
o 6 0y L s @ ° e
[W N N A -
%i%e (o‘ «ow, cé«ouo'(."oﬂc«ﬁwo'o”u ~;‘o»1‘««»u @O0y
5 R A et
° o ® @
Poe O f,‘ ® 5‘0‘) D90 % , LH >
.535"0’ L S “‘ b)] Q‘c"‘i‘.’ ‘ob.»s e .'.t".. o "o %
4 @2 . o) () ‘® >

1 200K 400K 600K 800K ™M
Tranco rank

Figure 7: Scatter plot showing the distribution of the severity
scores over the Tranco ranks. Size and color both indicate the
number of simultaneous techniques on the website.

Figure 8: Severity scores on the left and sites with multiple
techniques on the right.

Severity # Sites Combo # Sites

4 e L S0
5-6 563 (28.15%) 3 565 (28.25%)
7-8 330 (16.50%) 4 38 (4'40%)
9-10 12 (0.60%) 5 4 (0:20%)

(@) Severity scores (b) Combinations of BADTS

eTLD+1” is only a rough estimation. For example, a third-
party library could also be hosted on first-party servers or first-
party code on another domain like a CDN which then would
appear to be third-party code. In general, it is rather complex
to correctly determine if multiple domains belong to the same
owner, as previous research has shown [e.g., 31, 36, 53, 57].

Table 3: BADT occurrence by first- and third-party code.

Technique # First-party # Third-party
SHORTCUT 283 (73%) 103 (27%)
TRIGBREAK 282 (81%) 68 (19%)
CONCLEAR 221 (17%) 1084 (83%)
MODBUILT 145 (43%) 195 (57%)
WIDTHDIFF 19 (3%) 707 (97%)
LOGGET 197 (16%) 1059 (84%)
TOTAL 1147 (26%) 3216 (74%)

Now as Table 3 shows, we get a very different picture de-
pending on the technique: SHORTCUT was mainly caused
by first-party code, while MODBUILT was more balanced.
On the other hand, WIDTHDIFF showed the exact opposite
and was with an overwhelming majority present in third-party

>The eTLD is the effective top-level domain, e.g., for foo.example.co.jp
the eTLD is .co.jp and the eTLD+1 is example.co.jp

0.14

©
o
)

©
o
o

Proportional prevelance
o o
o o
[} o

004 “““
0.02 ..—— ShortCut -+ ConClear —e— WidthDiff |........
TrigBreak — = ModBuilt —e- LogGet
0.00 -
100K 300K 500K 700K 900K

Tranco rank

Figure 9: Normalized correlation between website rank and
prevalence of each technique in 100k buckets. The most pop-
ular sites are on the left.

code. But even if a technique was triggered by third-party
code, it still can very well be the first party’s intent to inter-
fere with an analysis by including their code. For example,
the most prevalent script for causing both SHORTCUT and
TRIGBREAK in third-party code is a plugin for the popular
e-commerce platform Shopify called Vault AntiTheft Protec-
tion App [13], which promises to protect the website from
competitors that might want to steal one’s content.

Now we next want to know if the number of third-party
inclusions is caused by relatively few popular scripts or not.
In Figure 10 we can see that, e.g., for WIDTHDIFF the most
popular script is already responsible for about 51% of all cases
in third-party code and the top 5 together cover already 77%.
This means that only a very small number of scripts is respon-
sible for the high prevalence of this technique, while for other
BADTs this behavior is less pronounced. Moreover, LOGGET
and CONCLEAR almost perfectly overlap each other, as the
most popular implementations also try to hide the suspicious
logged elements by clearing the console immediately after-
ward each time.

To further investigate this, we performed a manual analysis
of the 10 most prevalent third-party scripts for each of the 6
BADTs. We found that many of these scripts are related to
advertisements, bot detection, content protection, and crypto-
jacking. Moreover, many of them were not just minified but
completely obfuscated. In total, 35 of the 60 most prevalent
scripts and in particular 9 of the 10 most common scripts caus-
ing LOGGET were obfuscated, indicating that these scripts
would rather not be analyzed and might even be related to
malicious activities.

Finally, we also investigated what types of categories these
2,000 sites belong to. To this end, we used the WebPulse
Site Review service [55] operated by the security company
Symantec. As Table 4 shows, these sites are often related to
pornography, piracy, and suspicious activity in general.

2942 30th USENIX Security Symposium

USENIX Association

£ 100
a
3]
2]
é\
5 80
x>
B
=
— 60
]
[
o
8
$ 40
8
@
o
]
=2 20
% —— ShortCut == ConClear ~ —e— WidthDiff
g TrigBreak —+= ModBuilt -e- LogGet
O 0
0 5 10 15 20 25

Most popular scripts

Figure 10: The 25 most common scripts for each technique
and their cumulative share of sites

Table 4: Website categories according to Symantec.

Category # Sites % Total
Entertainment 183 9.15%
Finance 64 3.20%
Malware 85 4.25%
News 54 2.70%
Other 188 9.40%
Piracy 104 5.20%
Pornography 602 30.10%
Shopping 50 2.50%
Suspicious 232 11.60%
Technology 78 3.90%
Uncategorized 477 23.85%

S Sophisticated Anti-Debugging

In contrast to the BADTs seen so far, the following sophisti-
cated anti-debugging techniques (SADTs) in this chapter are
much more elusive. They use side-channels to become aware
of an ongoing analysis and then subtly alter the behavior of a
website only if they are triggered and otherwise stay dormant.

5.1 Timing-Based Techniques

The following three timing-based SADTs are based on the
fact that certain operations become slower as long as the
DevTools are open. On a high level, these techniques get the
current time, e.g., via Date.now Of performance.now, perform
some action and then check how much time has passed. If that
time is above a specified threshold or changes significantly
at one point, then the DevTools were likely opened. These
techniques thus use the time between operations as a side-
channel about the state of the DevTools. Firefox, for example,
lowers the resolution of timers due to privacy concerns and to
mitigate side-channel attacks like Spectre [37]. Yet a precision
in the range of milliseconds is still more than enough for these
techniques to work.

Monitor existing Breakpoint (MONBREAK) As the de-
bugger statement only halts the execution if a debugger is
attached, we can simply compare the time directly before and
after that statement. If it took longer than, e.g., 100ms then
we can be sure that the DevTools are open [16]. Figure 11
shows how this technique can be implemented in a few lines
of JavaScript code. The main difference to TRIGBREAK is
that the goal here is not to disrupt the user but rather to in-
fer the state of the DevTools. So, in this case, triggering the
breakpoint only once is already enough to know somebody is
analyzing the website and there is no need to trigger additional
breakpoints afterward.

function measure() {
const start = performance.now();

debugger;
const time = performance.now() - start;
if (time > 100) { /#DevTools are open!x/ }

}

setInterval (measure, 1000);

Figure 11: Detecting the DevTools by checking for an at-
tached debugger

Wait for new Breakpoint (NEWBREAK) A more stealthy
variation of the MONBREAK technique does not trigger break-
points by itself, but rather detects when the analyst is adding
a new breakpoint anywhere. As soon as this new breakpoint
is hit, we can again observe this through timing information.
If we call a function repeatedly in the same interval and sud-
denly it took way longer to execute again, there is a good
chance that a breakpoint was hit. While this approach is more
stealthy, it obviously has no effect as long as someone uses
the DevTools without setting a breakpoint at all. Also, note
that set Interval and similar functions are throttled if the user
switches to another tab. Therefore, an additional check with
hasFocus is needed to confirm that this page is currently in
the foreground, as shown in Figure 12.

function measure() {

const diff = performance.now() - timeSincelast;
if (document.hasFocus() && diff > threshold) {
//DevTools are open!

}

timeSincelast = performance.now();

}

setInterval (measure, 300);

Figure 12: Detecting the DevTools by checking the time be-
tween multiple executions

Console spamming (CONSPAM) While the debugger
statement is a useful tool to implement anti-debugging mea-
sures, it still has the drawback that halting at breakpoints can
easily be disabled in the DevTools. The following technique

USENIX Association

30th USENIX Security Symposium 2943

instead abuses the fact that certain functions of the browser-
provided window object run slower while the DevTools are
open. Historically, this worked by creating many text ele-
ments with long content and quickly adding and removing
them to the DOM over and over again [50]. This caused a no-
ticeable slowdown, as the elements tab of the DevTools tries
to highlight all changes to the DOM in real-time. However,
this approach no longer works in both Firefox and Chrome.
What still works, at the time of writing, is to write lots of
output to the console and check how long this took [19]. As
the browser needs to do more work if the console is actually
visible, this is a useful side-channel about the state of the
DevTools. Conveniently, this technique also works regardless
of which tab in DevTools currently has the focus.

Figure 13 shows a possible implementation of this CON-
SPAM technique. An alternative is to first measure the time
a few rounds in the beginning and then always compare to
that baseline. This has the advantage that a visitor with slow
hardware does not trigger a false positive, as there is no fixed
threshold. However, this approach then assumes the DevTools
are going to be opened after the page has loaded and not right
from the start.

function measure() {
const start = performance.now();
for (let i = 0; 1 < 100; i++) {
console.log(i);
console.clear();
}
const time = performance.now() - start;
if (time > threshold) { /#DevTools open!x*/ }
}

setInterval (measure, 1000);

Figure 13: Detecting the DevTools by repeatedly calling func-
tions of the console

5.2 Systematization II

Using the same properties as in our previous systematization
of the basic techniques, we now take a look at these newly
introduced sophisticated techniques in Table 5. All of them
are versatile since they only detect the presence of the analysis
and do not prevent the use of certain features. NEWBREAK
is stealthier but less effective since, depending on the user’s
actions, it might not be triggered at all. While MONBREAK
stops working if breakpoints are disabled, the other techniques
are rather resilient since they are hard to disarm unless one
finds their exact location in the code.

6 Targeted Study of SADTs

Now that we have taken a closer look at these SADTs, we
also want to find them in the wild. The main challenge in
detecting them is that they are a lot more flexible and thus

Table 5: Systematization of SADTs. The goals are Impede,
Alter, and Detect. A filled circle means the property fully
applies, a half-filled circle means it applies with limitations.

Technique Goal Effective Stealthy Versatile Resilient
MONBREAK D [(@) [] O
NEWBREAK D © [[] ©
CONSPAM D [© [J []

not as easy to detect as the basic techniques. In particular,
we can not identify them by just monitoring a few specific
function calls and property accesses. While all SADTs rely on
timing information, they do not necessarily need access to the
Date or performance objects, as they could also get a clock
from a remote source, e.g., via WebSockets. Therefore, we
need a more general approach to reliably detect sophisticated
techniques in the wild. In the following, we will describe how
we address this challenge and then report on our findings.

6.1 Study II — Methodology

While these SADTS can differ in how they are implemented,
they still have something in common: They try to figure out
whether they are currently analyzed or not and then behave
accordingly. Therefore, code execution must diverge from the
default, benign case as soon as the analysis is detected. If
we somehow could monitor the executed code twice, once
with the DevTools open and once with them closed, and then
compare those two executions, we would be able to isolate
the SADT. Thus, our methodology is based on two concepts:
deterministic website replay and code convergence.

Deterministic website replay To obtain meaningful results
when visiting the same website multiple times, we first need
a way to reliably load it exactly the same way. In particular,
this means we do not want the server-side logic to have any
influence on the response and we also do not want dynamic
content like different ads on every page load. Therefore, we
must load the website only once from the remote server and
cache all content on a local proxy. Afterward, we ensure that
our browser can not connect to the outside world and loads
the page only from our proxy to avoid any interaction with
the remote server. However, we also must disable all ways
to obtain randomness on the client-side. Otherwise, if a URL
parameter contains a random id, the proxy will not have seen
this request before and be unable to answer as expected. Thus
we replace Math.random with a PRNG implementation with a
fixed seed and use a fixed timestamp as a starting point for all
clock information in Date and performance.

In theory, without any external logic or randomness, the
page should behave entirely deterministic every time we load
it, which is exactly what we need for our analysis. Unfor-
tunately, the replays are not entirely perfect. Since in the
browser and also the underlying operating system many ac-

2944 30th USENIX Security Symposium

USENIX Association

tions are executed in parallel, the exact order of events is not
always deterministic. For example, consider a website with
multiple iframes which all send a postmessage to the main
frame upon completion. The main frame could execute differ-
ent code depending on which frame loaded first. So even if
our replay system otherwise works perfectly, we can not pre-
vent that small performance differences in this multi-process
system sometimes cause one iframe to load faster than an-
other, leading to different behavior in the main frame in the
end. Getting rid of these performance fluctuations is unreal-
istic, as it would require immense changes to both browser
architecture and the underlying operating system’s scheduler.
Therefore, we instead rely on the concept of code convergence
to deal with this problem.

Code convergence The idea here is that the more often we
replay the same website, the lower the likelihood becomes
that we will discover any new execution paths caused by
small timing differences. Or to describe it more briefly: The
executed code converges over time. We thus replay each page
multiple times and always measure the code coverage, i.e.,
we track which statements in a script are executed and which
are not, across all scripts on the page. By merging all seen
code from the previous replays, we can check if the current
replay introduced any new statements. In the same way, we
can also build the intersection of all previously executed code
and check if some parts were not executed, which always had
been executed before. If now, for multiple replays, no new
code is added nor always executed code missing, we likely
have executed until convergence.

Detection Methodology By combining these two concepts,
we can now replay any website in the same environment until
convergence. We can then inject analysis artifacts into the
page, like attaching a debugger or adding a breakpoint. As
long as we do not make any changes to the website’s code, it
should behave like during the previous replays. This means
we should not see any completely new code, nor should code
be missing that previously was always executed. If, however,
we reliably observe different code execution only when our
analysis artifacts are present, then these differences are most
likely caused by an anti-debugging technique.

6.2 Study II - Implementation

We implemented our approach as a tool that can detect SADTSs
in a fully automated fashion. As in our first study, we con-
trol the browser from Node.js by using the Chrome DevTools
Protocol (CDP). This protocol exposes all features of the
DevTools for programmatic access and gives us low-level
information and callbacks for many useful events. In par-
ticular, the CDP gives us fine-grained code coverage data
with the Profiler.takePreciseCoverage command. More-
over, the protocol lets us control the debugger, so we can
programmatically enable breakpoints and set them at specific

locations, which we need to detect MONBREAK and NEW-
BREAK. Since the CDP does not include a way to open the
DevTools on demand, we instead cause an artificial slowdown
of the console to detect the CONSPAM technique. We imple-
mented this by wrapping all functions of the console object to
first execute a busy loop for a short time, which approximates
the slowdown normally caused by an open DevTools window.

For the replaying part, we use a modified version of Web
Page Replay (WPR) [18], a tool written in Go that is devel-
oped and used by Google to benchmark their browser. The
tool is designed to record the loading of a website and cre-
ates an archive file with all requests and responses, including
the headers. This archive file can then be used to create a
deterministic replay of the previously recorded page. WPR
also tries to make the replays as deterministic as possible,
by injecting a script that wraps common sources of client-
side randomness like Math.random and Date to always use the
same seed values. Additionally, we improved the accuracy
of the replays by extending WPR to always answer with the
same delay as the real server during the recording. By com-
bining our Node.js browser instrumentation and this modified
Go proxy, we can now automatically detect anti-debugging
techniques in the wild.

6.3 Study II - Experiment Setup

To get accurate results, it is important to replay each page
multiple times to ensure we have reached code convergence.
Therefore, we record each website once and replay it until
we get 10 consecutive measurements without any changes
in coverage. If after 50 replays this still did not happen, we
discard the website as being incompatible with our replaying
infrastructure. After convergence, we test each technique 5
times. We only count a technique as present if it caused dif-
ferences in at least 3 of the replays, to ensure their effect on
the code coverage is reproducible.

Replaying this many times is a costly process, especially
since we need to restart the browser with a new profile be-
tween each replay. Otherwise, stored state in cookies, local
storage, and other places could lead to different execution
branches. Therefore, in this second study, we only target the
2000 websites with the highest severity score according to
our previous study on BADTs in Section 4.3. In the following,
we will investigate whether this score is also a good indicator
for the presence of sophisticated techniques.

6.4 Study II - Prevalence

While we started this study directly after the first had finished,
nevertheless 33 out of the 2000 selected sites were no longer
reachable. Another 6 sites did not converge even after 50
replays. On 229 out of the remaining 1961 sites, we could
find behavior similar to one or more of the three SADTSs. Thus,

USENIX Association

30th USENIX Security Symposium 2945

about 12% of these sites executed different code when under
analysis.

As Table 6 shows, the MONBREAK technique was the
most common of the three and present on around 14% of
the investigated sites. On the other hand, CONSPAM was
rather uncommon with less than 1% prevalence. The tech-
nique MONBREAK was mostly seen in first-party code, while
NEWBREAK was a bit more often seen in third-party code.
However, any difference in third-party code execution might
also cause differences in first-party code and vice versa. Thus,
there is some overlap between first- and third-party code de-
tections.

Table 6: Sites with SADTs in first- and third-party code.
Technique #All # Third-party

First-party

MONBREAK 138 124 24
NEWBREAK 85 38 54
CONSPAM 8 5 3
ToTAL 229 165 81

When comparing these results to another sample of 100
randomly selected sites, we only found 1 site with a SADT, in
this case NEWBREAK. We see this low false positive rate as
evidence that our approach to detect sophisticated techniques
is reliable. Furthermore, we can see that BADTs are indeed a
good indicator for the presence of further sophisticated tech-
niques.

7 Discussion

In the following, we will discuss reasons to employ anti-
debugging techniques, some limitations of our presented ap-
proach, and how we envision future work to build and improve
on this.

7.1 Anti-Debugging and Maliciousness

As with so many other technologies and techniques, the very
same thing can be used for both good and evil. On one hand,
the anti-debugging techniques presented in this paper obvi-
ously can be used to make it more difficult to detect and
subsequently analyze malicious JavaScript code. On the other
hand, the same techniques can also be used in legitimate ways,
e.g., to protect intellectual property by making it harder to
extract the content of a website and to discourage reverse-
engineering attempts of client-side code. Discerning between
these two use cases, however, depends a lot on the context,
i.e., what other content and scripts a website is serving. In this
regard, anti-debugging techniques share many characteristics
with code obfuscation techniques, which can also be used in
an attempt to protect intellectual property, as well as to bet-
ter hide malicious code [45]. Moreover, both do not prevent
the analysis in itself, but rather deter by complicating any

attempts at it. Thus, any malicious code that makes use of ob-
fuscation and/or anti-debugging techniques has an advantage
over code that does not use these techniques, by increasing
the chances that an attack can remain undetected for longer.

Previous research has shown that while the obfuscation of
JavaScript code does not necessarily imply maliciousness,
the majority of malware samples are nevertheless obfus-
cated [15, 23]. Thus, discerning minified from obfuscated
code is important, as the presence of obfuscated code can
serve as a useful feature for malware scanners [48]. Due to
their similar characteristics, we argue that these findings on
code obfuscation likely apply to anti-debugging techniques
as well. That is to say, their presence should not be taken as
the sole reason to classify a website as malicious. Yet, similar
to the presence of obfuscation, their presence can serve as a
useful feature for a malware scanner and thus should be taken
into account accordingly.

7.2 Limitations

Our approach is essentially a detector for anti-debugging tech-
niques. As such, it struggles with three properties that affect
virtually every detector: completeness, false positives, and
false negatives.

Completeness First of all, we can not be certain that we
have included all existing anti-debugging techniques in this
work. However, due to our extensive study of previous publi-
cations, blog posts, and Q&A sites on the Web, we are con-
fident that our research investigates the most common and
well-known techniques. Moreover, we are certain that all anti-
debugging techniques must have at least one of the three goals
described in Section 3: Either outright impede the analysis, or
subtly alter its results, or just detect its presence. While it is
possible that we have missed one particular implementation to
achieve one of the three goals, we argue that we are complete
in the sense that no entirely new technique with completely
different goals does exist.

False positives Many of our measurements are highly ac-
curate, e.g., the code to trigger the techniques DEVCUT and
LOGGET is so specific that they are obviously and undeni-
ably anti-debugging techniques and nothing else. However,
especially our results on the sophisticated techniques report
on websites that would interfere with an analysis, yet their
behavior might not necessarily be malicious or intentional.
As a backdoor could always be cleverly disguised as a "bug-
door" [56], i.e., look like an innocent programming mistake,
we will never know the true intentions behind any suspicious
piece of code. Nevertheless, these websites behave differently
in an analysis environment. We show that just attaching a
debugger or setting a breakpoint during analysis can already
have dangerous effects on the outcome of the analysis. Under
these circumstances, any derived results should be considered
inconclusive at best and deceiving at worst.

2946 30th USENIX Security Symposium

USENIX Association

False negatives Some actions are only significantly hin-
dering an ongoing analysis if they are happening constantly
like clearing the console or breakpoints on every function
invoke. Therefore, we introduced the confidence and severity
scores, to focus on the most severe cases of anti-debugging
attempts. Naturally, this means that some sites might have
escaped our attention if they trigger the technique only very
rarely, but on the other hand then also means their techniques
are less effective. Moreover, self-inspecting scripts could be-
come aware of our modifications to built-in functions during
the replay and then interfere with our data collection, as we
will discuss in the next section. Therefore, our results should
be seen as merely the lower bound of active anti-debugging
techniques in the wild. To make certain we definitely detect
anti-debugging attempts from known implementations, we
created a testbed with code snippets found on the Web a well
as generated by a JavaScript obfuscator with anti-debugging
features [46] to validate our detection methodology.

7.3 Future Work

We see our paper as the first foray into the world of anti-
debugging on the Web, where we quantify the problem and
raise awareness for this phenomenon. Yet, there is still more to
be done, in particular concerning reliably detecting advanced
self-inspection and deploying effective countermeasures.

Advanced self-inspection In this paper, we worked under
the assumption that attackers only try to interfere with de-
bugging attempts, but not with our attempts to detect their
anti-debugging. Our replaying approach for sophisticated
techniques in particular needs to modify built-ins like Date
and Math, which could be detected by self-inspecting scripts.
Therefore, the sensible next step is to move these modifi-
cations from the JavaScript environment to the C++ realm,
where they can not be inspected directly by an attacker and
could only be observed through side-effects. Projects like Vis-
ibleV8 [22] seem to offer a promising route for researchers
to achieve this without a deep understanding of the browser’s
code.

Countermeasures Some of the presented techniques are
trivial to bypass, e.g., DEVCUT just prevents the use of certain
hotkeys but not the menu bar to open the DevTools. However,
something like preventing the executed JavaScript code from
learning that a breakpoint was hit is a much harder problem,
as we saw with the MONBREAK technique. This would only
be possible to achieve by modifying the browser and its un-
derlying JavaScript engine itself. And even then, freezing the
time is an especially difficult feat since a script could also get
time information from a remote server and thus easily detect
any gaps or clock drifts. Therefore, we would like to see a
special forensic browser with countermeasures in place to
enable safe and reliable debugging of client-side code in an
adversarial setting.

8 Related Work

In this section, we will first present works on anti-debugging
in native malware, followed by publications on the topic of
malicious JavaScript in general and conclude with the most
closely related papers about evasive malware on the Web.

8.1 Anti-debugging in General

Anti-debugging techniques are a well-known concept
from the area of native x86 malware. Back in 2006,
Vasudevan and Yerraballi [58] proposed the first analysis sys-
tem that focused on mitigations for anti-debugging techniques.
Their system called Cobra can, in particular, deal with self-
modifying and self-checking code and thus counters many
anti-analysis tricks. In 2010, Balzarotti et al. [2] proposed a
technique to detect if a malware sample behaves differently
in an emulated environment when compared to a reference
host. Their main challenge was to achieve a deterministic ex-
ecution of the malware in both environments so that a robust
comparison of behavior becomes possible. Therefore, they
first record all interaction of the malware with the operating
system to exactly replay the results of the system calls in the
second run. One year later Lindorfer et al. [34] extended on
this idea with their system called Disarm, by not only compar-
ing the behavior between the emulation and a real system, but
instead comparing behavior between four different emulation
systems.

Kirat et al. [28] improved on these previous works by creat-
ing an analysis platform called BareCloud which runs the mal-
ware in a transparent bare-metal environment without in-guest
monitoring. However, the cat and mouse game continued by
finding new techniques to detect and evade even these bare-
metal analysis systems. In 2017, Miramirkhani et al. [38] pre-
sented their work on "wear and tear" artifacts, i.e., detecting
the analysis system because typical artifacts of human inter-
action with the system in the past are missing.

To summarize, we can see that the deterministic execution
of malware in multiple environments and then comparing
differences in execution is a well-established approach to
analyze malware binaries. However, we are, to the best of
our knowledge, the first to apply this concept for JavaScript
code running in browsers and to provide insights into how
wide-spread these techniques are in the wild.

8.2 Malicious JavaScript

Over the years, there have been many publications on ma-
licious JavaScript in general without any particular focus
on evasive measures or anti-debugging. Multiple works fo-
cused on drive-by attacks, e.g., JSAND by Cova et al. [6] uses
anomaly detection combined with an emulated execution to
generate detection signatures, while Cujo by Rieck et al. [43]
use static and dynamic code features to learn malicious pat-

USENIX Association

30th USENIX Security Symposium 2947

terns and detect them on-the-fly via a web proxy. Similarly,
Zozzle by Curtsinger et al. [7], uses mostly static features
from the AST together with a Bayes classifier to detect mali-
cious code. Targeting drive-by exploit kits, Stock et al. [54]
presented their work on Kizzle. Their approach is based on the
fact that while the obfuscated code of such attacks changes
frequently, the underlying unpacked code evolves much more
slowly, which aids the detection process. As a more general
defense that is not based on a detector, Maisuradze et al. [35]
proposed Dachshund, which removes all attacker-controlled
constants from JavaScript code, rendering JIT-ROP attacks
infeasible. Other works focused on malicious browser exten-
sions [26], discovering evil websites [21], and creating fast
pre-filters to aid the large-scale detection of malware [4, 15].

8.3 Evasive Malware on the Web

A few publications also specifically focused on eva-
sive JavaScript malware, which actively tries to avoid be-
ing detected. In 2011, Kapravelos et al. [24] showed how
they can detect the presence of a high-interaction honey-
client and subsequently evade detection. One year later,
Kolbitsch et al. [29] created Rozzle, an approach to trigger
environment-specific malware via JavaScript multi-execution.
This way, they can observe malicious code paths without
actually satisfying checks for browser or plugin versions.
Improving on this, Kim et al. [27] presented their work on
forced execution to reveal malicious behavior, with a focus
on preventing crashes. To detect evasive JavaScript malware
samples that evolve over time, Kapravelos et al. [25] designed
Revolver, which utilizes similarities in samples compared to
older versions of the same malware. Their rationale is that
malware authors react to detections by anti-virus software
and iteratively mutate their code to regain their stealthiness.
In their work called Tick Tock, Ho et al. [20] investigated the
feasibility of browser-based red pills, which can detect if the
browser is running in a virtual machine from JavaScript code
by using timing side-channels.

However, while these previous publications worked on the
phenomenon of evasive Web malware, they all assume the
malware is analyzed as part of an automated system and tries
to detect differences in this analysis environment. On the
other hand, our threat model instead considers anti-debugging
measures to hinder or avoid detection by a human analyst
using a real browser.

9 Conclusion

In this paper, we systematically explored the phenomenon
of anti-debugging techniques targeting human analysts using
a real browser. We first introduced 6 basic techniques and
conducted a large-scale study to investigate the prevalence of
these techniques in the wild. We found that as many as 1 out
of 550 sites make use of severe anti-debugging, with multiple

techniques active on the same website. Furthermore, we pre-
sented a novel approach to detect 3 sophisticated techniques,
which is based on web page replaying and code convergence.
We used this approach to conduct a second, targeted study on
the websites with the most severe anti-debugging measures
from the first study. In this study, we could identify over 200
sites that behave differently when under analysis.

While many of these techniques are simple to detect and
counter if their presence is known, they can still be quite ef-
fective if multiple of them are used together. This is especially
true if the code is also additionally obfuscated so that they can
not be easily identified in the source code and subsequently
removed. As these techniques allow a website to completely
change its behavior under analysis, they are a threat to the
security of the Web and its users. We, therefore, see the need
for a forensic browser with effective and robust inspection
capabilities, which can not be detected or interfered with by
the website’s JavaScript code.

Acknowledgments

We would like to thank our shepherd Nick Nikiforakis and
all anonymous reviewers for their valuable comments and
suggestions. Moreover, we gratefully acknowledge funding
by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under Germany’s Excellence Strategy -
EXC 2092 CASA - 390781972.

References

[1] Anthony Lieuallen. Greasemonkey. Online
https://addons.mozilla.org/en-US/firefox/addon/
greasemonkey/, June 2019.

[2] D. Balzarotti, M. Cova, C. Karlberger, E. Kirda, C. Kruegel,
and G. Vigna. Efficient detection of split personalities in mal-
ware. In Proc. of Network and Distributed System Security
Symposium (NDSS), 2010.

[3] Black Duck Open Hub. Chromium open source
project. Online https://www.openhub.net/p/chrome/
analyses/latest/languages_summary, May 2020.

[4] D. Canali, M. Cova, G. Vigna, and C. Kruegel. Prophiler: a fast
filter for the large-scale detection of malicious web pages. In
Proc. of the International World Wide Web Conference (WWW),
2011.

[5] ChromeDevTools. Chrome devtools protocol. Online https:
//chromedevtools.github.io/devtools-protocol/,
May 2020.

[6] M. Cova, C. Kruegel, and G. Vigna. Detection and analysis of
drive-by-download attacks and malicious javascript code. In
Proc. of the International World Wide Web Conference (WWW),
2010.

2948 30th USENIX Security Symposium

USENIX Association

https://addons.mozilla.org/en-US/firefox/addon/greasemonkey/
https://addons.mozilla.org/en-US/firefox/addon/greasemonkey/
https://www.openhub.net/p/chrome/analyses/latest/languages_summary
https://www.openhub.net/p/chrome/analyses/latest/languages_summary
https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/

(7]

[8

—_—

(9]

[10]

(11]

[12]

(13]

(14]

(15]

(16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

C. Curtsinger, B. Livshits, B. G. Zorn, and C. Seifert. Zozzle:
Fast and precise in-browser javascript malware detection. In
Proc. of USENIX Security Symposium, 2011.

CVE Details. CVE-2018-6140. Online https://
www.cvedetails.com/cve/CVE-2018-6140/, Jan. 2019.

CVE Details. CVE-2019-11708. Online https://
www.cvedetails.com/cve/CVE-2019-11708/, July 2019.

CVE Details. CVE-2019-11752. Online https://
www.cvedetails.com/cve/CVE-2019-11752/, Sept. 2019.

CVE Details. CVE-2019-5789. Online https://
www.cvedetails.com/cve/CVE-2019-5789/, May 2019.

ECMA International. Ecmascript 2019 language specification.
Edition 10, 2019.

Electric Apps. Vault antitheft. Online https://
apps.shopify.com/vault-antitheft-protection-app,
May 2020.

A. Fass, R. P. Krawczyk, M. Backes, and B. Stock. Jast: Fully
syntactic detection of malicious (obfuscated) javascript. In
Proc. of Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA), 2018.

A. Fass, M. Backes, and B. Stock. Jstap: a static pre-filter for
malicious javascript detection. In Proc. of Annual Computer
Security Applications Conference (ACSAC), 2019.

J. M. Ferndndez. JavaScript AntiDebugging Tricks. On-
line https://x-c31l.github.io/posts/javascript-
antidebugging/, Feb. 2018.

Google Developers. Chrome devtools. Online https://
developers.google.com/web/tools/chrome-devtools,
Sept. 2019.

Google Git. Web page replay. Online https:
//chromium.googlesource.com/catapult/+/HEAD/
web_page_replay_go/, May 2020.

guya. How to know when chrome console is open. On-
line https://blog.guya.net/2014/06/20/how-to-know—
when-chrome-console-is-open/, June 2014.

G. Ho, D. Boneh, L. Ballard, and N. Provos. Tick tock: build-
ing browser red pills from timing side channels. In Proc. of
USENIX Workshop on Offensive Technologies (WOOT), 2014.

L. Invernizzi, P. M. Comparetti, S. Benvenuti, C. Kruegel,
M. Cova, and G. Vigna. Evilseed: A guided approach to finding
malicious web pages. In Proc. of IEEE Symposium on Security
and Privacy, 2012.

J. Jueckstock and A. Kapravelos. Visiblev8: In-browser moni-
toring of javascript in the wild. In Proc. of Internet Measure-
ment Conference (IMC), 2019.

S. Kaplan, B. Livshits, B. Zorn, C. Siefert, and C. Curtsinger.
"nofus: Automatically detecting"+ string. fromcharcode (32)+"
obfuscated". tolowercase ()+" javascript code. Technical report,
Technical Report MSR-TR 2011-57, Microsoft Research, 2011.

[24]

(25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

[36]

A. Kapravelos, M. Cova, C. Kruegel, and G. Vigna. Escape
from monkey island: Evading high-interaction honeyclients. In
Proc. of Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA), 2011.

A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and
G. Vigna. Revolver: An automated approach to the detection
of evasive web-based malware. In Proc. of USENIX Security
Symposium, 2013.

A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna,
and V. Paxson. Hulk: Eliciting malicious behavior in browser
extensions. In Proc. of USENIX Security Symposium, 2014.

K. Kim, I. L. Kim, C. H. Kim, Y. Kwon, Y. Zheng, X. Zhang,
and D. Xu. J-force: Forced execution on javascript. In Proc. of
the International World Wide Web Conference (WWW), 2017.

D. Kirat, G. Vigna, and C. Kruegel. Barecloud: bare-metal
analysis-based evasive malware detection. In Proc. of USENIX
Security Symposium, 2014.

C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert. Rozzle:
De-cloaking internet malware. In Proc. of IEEE Symposium
on Security and Privacy, 2012.

R. K. Konoth, E. Vineti, V. Moonsamy, M. Lindorfer,
C. Kruegel, H. Bos, and G. Vigna. Minesweeper: An in-depth
look into drive-by cryptocurrency mining and its defense. In
Proc. of ACM Conference on Computer and Communications
Security (CCS), 2018.

D. Kumar, Z. Ma, Z. Durumeric, A. Mirian, J. Mason, J. A.
Halderman, and M. Bailey. Security challenges in an increas-
ingly tangled web. In Proc. of the International World Wide
Web Conference (WWW), 2017.

T. Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson,
and E. Kirda. Thou shalt not depend on me: Analysing the use
of outdated javascript libraries on the web. In Proc. of Network
and Distributed System Security Symposium (NDSS), 2017.

V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Kor-
czynski, and W. Joosen. Tranco: A research-oriented top sites
ranking hardened against manipulation. In Proc. of Network
and Distributed System Security Symposium (NDSS), 2019.

M. Lindorfer, C. Kolbitsch, and P. M. Comparetti. Detect-
ing environment-sensitive malware. In Proc. of International
Symposium on Research in Attacks, Intrusions and Defenses
(RAID), 2011.

G. Maisuradze, M. Backes, and C. Rossow. Dachshund: dig-
ging for and securing against (non-) blinded constants in jit
code. In Proc. of Network and Distributed System Security
Symposium (NDSS), 2017.

S. Matic, G. Tyson, and G. Stringhini. Pythia: a framework
for the automated analysis of web hosting environments. In
Proc. of the International World Wide Web Conference (WWW),
2019.

USENIX Association

30th USENIX Security Symposium 2949

https://www.cvedetails.com/cve/CVE-2018-6140/
https://www.cvedetails.com/cve/CVE-2018-6140/
https://www.cvedetails.com/cve/CVE-2019-11708/
https://www.cvedetails.com/cve/CVE-2019-11708/
https://www.cvedetails.com/cve/CVE-2019-11752/
https://www.cvedetails.com/cve/CVE-2019-11752/
https://www.cvedetails.com/cve/CVE-2019-5789/
https://www.cvedetails.com/cve/CVE-2019-5789/
https://apps.shopify.com/vault-antitheft-protection-app
https://apps.shopify.com/vault-antitheft-protection-app
https://x-c3ll.github.io/posts/javascript-antidebugging/
https://x-c3ll.github.io/posts/javascript-antidebugging/
https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-devtools
https://chromium.googlesource.com/catapult/+/HEAD/web_page_replay_go/
https://chromium.googlesource.com/catapult/+/HEAD/web_page_replay_go/
https://chromium.googlesource.com/catapult/+/HEAD/web_page_replay_go/
https://blog.guya.net/2014/06/20/how-to-know-when-chrome-console-is-open/
https://blog.guya.net/2014/06/20/how-to-know-when-chrome-console-is-open/

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

MDN Web Docs. performance.now(). Online
https://developer.mozilla.org/en-US/docs/Web/
API/Performance/now, May 2020.

N. Miramirkhani, M. P. Appini, N. Nikiforakis, and M. Poly-
chronakis. Spotless sandboxes: Evading malware analysis
systems using wear-and-tear artifacts. In Proc. of IEEE Sym-
posium on Security and Privacy, 2017.

M. Musch, M. Steffens, S. Roth, B. Stock, and M. Johns. Script-
protect: mitigating unsafe third-party javascript practices. In
Proc. of ACM Asia Conference on Computer and Communica-
tions Security (ASIA CCS), 2019.

M. Musch, C. Wressnegger, M. Johns, and K. Rieck. New
kid on the web: A study on the prevalence of webassembly in
the wild. In Proc. of Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), 2019.

J. H. Odvarko. Saying goodbye to firebug. Online
https://hacks.mozilla.org/2017/10/saying-goodbye—
to-firebug/, Oct. 2017.

P. H. Phung, D. Sands, and A. Chudnov. Lightweight self-
protecting javascript. In Proc. of ACM Symposium on Infor-
mation, Computer and Communications Security (ASIACCS),
20009.

K. Rieck, T. Krueger, and A. Dewald. Cujo: efficient detection
and prevention of drive-by-download attacks. In Proc. of
Annual Computer Security Applications Conference (ACSAC),
2010.

Sansec. Digital skimmer runs entirely on Google, defeats CSP.
Online https://sansec.io/research/skimming-google-
defeats-csp, June 2020.

S. Sarker, J. Jueckstock, and A. Kapravelos. Hiding in
plain site: Detecting javascript obfuscation through concealed
browser api usage. In Proc. of Internet Measurement Confer-
ence (IMC), 2020.

T. Serafim and T. Kachalov. JavaScript Obfuscator Tool. On-
line https://obfuscator.io/, Dec. 2020.

Sindresorhus. devtools-detect. Online https://github.com/
sindresorhus/devtools-detect, July 2020.

P. Skolka, C.-A. Staicu, and M. Pradel. Anything to hide?
studying minified and obfuscated code in the web. In Proc. of
the International World Wide Web Conference (WWW), 2019.

StackOverflow. How to quickly and conveniently disable
all console.log statements in my code? Online https://
stackoverflow.com/questions/1215392/, July 2009.

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

StackOverflow. Find out whether chrome console is
open. Online https://stackoverflow.com/questions/
7798748/, Oct. 2011.

StackOverflow. How does Facebook disable the
browser’s integrated Developer Tools? Online
https://stackoverflow.com/a/50674852, Feb. 2014.

StackOverflow. How can I block F12 keyboard key. On-
line https://stackoverflow.com/questions/28575722/,
Feb. 2015.

M. Steffens, M. Musch, M. Johns, and B. Stock. Who’s hosting
the block party? studying third-party blockage of csp and sri. In
Proc. of Network and Distributed System Security Symposium
(NDSS), 2021.

B. Stock, B. Livshits, and B. Zorn. Kizzle: a signature com-
piler for detecting exploit kits. In Proc. of Conference on
Dependable Systems and Networks (DSN), 2016.

Symantec. Webpulse site review.
sitereview.bluecoat.com/, Dec. 2020.

Online https://

S. J. Tan, S. Bratus, and T. Goodspeed. Interrupt-oriented
bugdoor programming: a minimalist approach to bugdooring
embedded systems firmware. In Proc. of Annual Computer
Security Applications Conference (ACSAC), 2014.

T. Urban, M. Degeling, T. Holz, and N. Pohlmann. Beyond
the front page: Measuring third party dynamics in the field. In
Proc. of the International World Wide Web Conference (WWW),
2020.

A. Vasudevan and R. Yerraballi. Cobra: Fine-grained malware
analysis using stealth localized-executions. In Proc. of IEEE
Symposium on Security and Privacy, 2006.

Wayback Machine. Spotity. Online
//web.archive.org/web/20180301010204/https:
//www.spotify.com/us/, Mar. 2018.

https:

ww. Anti anti-debugger. Online https://greasyfork.org/
en/scripts/32015-anti-anti-debugger/code, Aug.
2017.

W. Xu, F. Zhang, and S. Zhu. The power of obfuscation tech-
niques in malicious javascript code: A measurement study. In
2012 7th International Conference on Malicious and Unwanted
Software, 2012.

W. Xu, F. Zhang, and S. Zhu. Jstill: mostly static detection
of obfuscated malicious javascript code. In Proc. of ACM
Conference on Data and Application Security and Privacy
(CODASPY), 2013.

2950 30th USENIX Security Symposium

USENIX Association

https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://hacks.mozilla.org/2017/10/saying-goodbye-to-firebug/
https://hacks.mozilla.org/2017/10/saying-goodbye-to-firebug/
https://sansec.io/research/skimming-google-defeats-csp
https://sansec.io/research/skimming-google-defeats-csp
https://obfuscator.io/
https://github.com/sindresorhus/devtools-detect
https://github.com/sindresorhus/devtools-detect
https://stackoverflow.com/questions/1215392/
https://stackoverflow.com/questions/1215392/
https://stackoverflow.com/questions/7798748/
https://stackoverflow.com/questions/7798748/
https://stackoverflow.com/a/50674852
https://stackoverflow.com/questions/28575722/
https://sitereview.bluecoat.com/
https://sitereview.bluecoat.com/
https://web.archive.org/web/20180301010204/https://www.spotify.com/us/
https://web.archive.org/web/20180301010204/https://www.spotify.com/us/
https://web.archive.org/web/20180301010204/https://www.spotify.com/us/
https://greasyfork.org/en/scripts/32015-anti-anti-debugger/code
https://greasyfork.org/en/scripts/32015-anti-anti-debugger/code

	Introduction
	Background and Scenario
	Debugging JavaScript Code
	Threat Model and Scope

	Basic Anti-Debugging
	Impeding the analysis
	Altering the analysis
	Detecting the analysis
	Systematization I

	Large-Scale Study of BADTs
	Study I – Methodology
	Study I – Experiment Setup
	Study I – Prevalence
	Study I – Results

	Sophisticated Anti-Debugging
	Timing-Based Techniques
	Systematization II

	Targeted Study of SADTs
	Study II – Methodology
	Study II – Implementation
	Study II – Experiment Setup
	Study II – Prevalence

	Discussion
	Anti-Debugging and Maliciousness
	Limitations
	Future Work

	Related Work
	Anti-debugging in General
	Malicious JavaScript
	Evasive Malware on the Web

	Conclusion

