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Abstract

We investigate the problem of message transmission over time-varying single-user multiple-input multiple-output (MIMO)
Rayleigh fading channels with average power constraint and with complete channel state information available at the receiver side
(CSIR). To describe the channel variations over the time, we consider a first-order Gauss-Markov model. We completely solve
the problem by giving a single-letter characterization of the channel capacity in closed form and by providing a rigorous proof
of it.

Index Terms

Gauss-Markov Rayleigh fading channels, channel capacity, multiple-antenna channels

I. INTRODUCTION

In many new applications in modern wireless communications such as several machine-to-machine and human-to-machine

systems, the tactile internet [1] and industry 4.0 [2], robust and ultra-reliable low latency information exchange is required. These

applications impose challenges on the robustness requirement because of the time-varying nature of the channel conditions

caused by the mobility and the changing wireless medium.

Several accurate tractable channel models are employed to model the channel variations appearing in wireless communications

including the Markov model, often employed in flat fading and inter-symbol interference [3]. The Markov model is widely

used for modeling wireless flat-fading channels due to its low memory and its consolidated theory.

The availability and quality of channel state information (CSI) has a high influence on the capacity of the Markov channels.

Over the past decades, many researchers have addressed the problem of communication over finite-state Markov channels

(FSMCs) [4] and extensive studies have been performed to analyze the capacity of FSMCs in closed form under the assumption

of the availability of partial/complete channel state information at the sender and/or the receiver side [5]–[11].

In our work, the focus is on continuously time-varying Markov channels, which are of high relevance for practical systems.

In particular, we are concerned with the time-varying single-user multiple-input multiple-output (MIMO) Rayleigh fading

channels, where we assume that the statistics of the gain sequence are known to both the sender and the receiver and that the

actual realization of the channel state sequence is completely known to the receiver only (CSIR). Therefore, the state sequence

is viewed as a second output sequence of the channel. We further assume that the channel fades are modeled as a first-order

Gauss-Markov process, which is widely used to describe the time-varying aspect of the channel [12]–[15]. The focus is on

the multiple-antenna setting which has drawn considerable attention in the area of wireless communications because MIMO

systems offer higher rates and more reliability and resistance to interference, compared to single-input single-output (SISO)

systems [16].

To the best of our knowledge, no rigorous proof of the capacity of MIMO Gauss-Markov fading channels with CSIR is

provided in the literature. A single-letter expression for the capacity is provided in [17] in the case when the channel fades are

independent and identically distributed (i.i.d.). Other than that, only the proof of a general formula based on the inf-information

rate for the capacity which can be generalized for arbitrary channels with abstract alphabets is provided in [18].

The main contribution of our work is to give a single-letter expression of the capacity of MIMO Gauss-Markov fading

channels with average power constraint and to provide a rigorous proof of it.

Paper Outline: The rest of the paper is organized as follows. In Section II, we present the channel model, provide the

key definitions and the main and auxiliary results. In Section III, we provide a rigorous proof of the capacity of time-varying

multi-antenna Rayleigh fading channels with CSIR. Section IV is devoted to deriving an upper-bound on the variance of the
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by the German Federal Ministry of Education and Research (BMBF) under Grant 16KIS1003K.
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normalized information density between the inputs and the outputs of the time-varying MIMO Rayleigh fading channel. This

auxiliary result is used in the proof of the capacity formula. Section V contains concluding remarks and proposes potential

future research in this field. Several auxiliary lemmas are collected in the Appendix.

Notation: C denotes the set of complex numbers and R denotes the set of real numbers; H(·) and h(·) correspond to

the entropy and the differential entropy function, respectively; I(·; ·) denotes the mutual information between two random

variables. All information quantities are taken to base 2. Throughout the paper, log is taken to base 2. The natural exponential

and the natural logarithm are denoted by exp and ln, respectively. For any random variables X and Y whose joint probability

law has a density pX,Y (x, y), we denote their marginal probability density function by pX(x) and pY (y), respectively, and

their conditional probability density functions by pX|Y (x|y) and pY |X(y|x). For any random variables X , Y and Z , we use

the notation X ◦− Y ◦− Z to indicate a Markov chain. |K| stands for the cardinality of the set K. tr refers to the trace operator.

For any matrix A, ‖A‖ stands for the operator norm of A with respect to the Euclidean norm, AH stands for the standard

Hermitian transpose of A, vec (A) refers to the vectorization of A, λmax(A) refers to the maximum eigenvalue of A and

λmin(A) refers to the its minimum eigenvalue. For any matrix A and B, we use the notation A � B to indicate that B−A

is positive semi definite. For any vector X, XT refers to its transpose. For any random matrix A ∈ Cm×n with entries Ai,j

i = 1, . . . ,m, j = 1, . . . , n, we define

E [A] =







E [A11] E [A12] . . .
...

. . .

E [Am1] E [Amn]






.

For any integer m, Q(P,m) is defined to be the set of positive semi-definite Hermitian matrices which are elements of Cm×m

and whose trace is smaller than or equal to P.

II. CHANNEL MODEL, DEFINITIONS AND RESULTS

A. Channel Model

For any block-length n, we consider the following channel model for the time-variant fading channel WGn

zi = Giti + ξi i = 1 . . . n, (1)

where tn = (t1, . . . , tn) ∈ CNT×n and zn = (z1, . . . , zn) ∈ CNR×n are channel input and output blocks, respectively, and

where NT and NR refer to the number of transmit and receive antennas, respectively.

Here, Gn = G1 . . .Gn, where Gi models the gain for the ith channel use. We consider the following model for the gain.

For 0 ≤ α < 1 :

Gi =
√
αGi−1 +

√
1− αWi, i = 2 . . . n. (2)

We assume that G1 and Wi, i = 2 . . . n, are i.i.d., where G1 and Wi, i = 2 . . . n, have i.i.d. entries and where

vec(G1), vec(Wi), i = 2 . . . n are drawn from NC (0NRNT
, INRNT

) . Therefore, the sequence of Gi, i = 1 . . . n, forms a

Markov chain. ξn = (ξ1, . . . , ξn) ∈ CNR×n models the noise sequence. We further assume that the ξis are i.i.d., where

ξi ∼ NC

(

0NR
, σ2INR

)

, i = 1 . . . n, that Gn and ξn are mutually independent and that (Gn, ξn) is independent of the

random input sequence T n = (T1, . . . ,Tn). It is also assumed that both the sender and the receiver know the statistics of the

random gain sequence Gn and that only the receiver knows its actual realization (CSIR). Therefore, Gn is viewed as a second

output sequence of the fading channel.

Remark 1. It follows from (2) that all fades are i.i.d. for α = 0. This scenario has been already treated in [17].

B. Properties of the random gain sequence

In the following lemmas, we present some properties of the random gain in (2).

Lemma 1. For 0 < α < 1 and i ∈ {1 . . . n},

Gi =
√
α
i−1

G1 +
√
1− α

i
∑

j=2

√
α
i−j

Wj .

Proof. We will proceed by induction. Base Case: Clearly, the statement of the Lemma holds for i = 1

Inductive step: Show that for any k ≥ 2, if the statement of the lemma holds for i = k then it holds for i = k + 1.

2



Assume that the statement of the lemma holds for i = k, then we have

Gk =
√
α
k−1

G1 +
√
1− α

k
∑

j=2

√
α
k−j

Wj.

It follows that

Gk+1

(a)
=

√
αGk +

√
1− αWk+1

(b)
=

√
α





√
α
k−1

G1 +
√
1− α

k
∑

j=2

√
α
k−j

Wj



+
√
1− αWk+1

=
√
α
k
G1 +

√
1− α

k
∑

j=2

√
α
k+1−j

Wj +
√
1− αWk+1

=
√
α
k
G1 +

√
1− α

k
∑

j=2

√
α
k+1−j

Wj +
√
1− α

√
α
k+1−(k+1)

Wk+1

=
√
α
k
G1 +

√
1− α

k+1
∑

j=2

√
α
k+1−j

Wj ,

where (a) follows from (2) and (b) follows from the induction assumption. Thus, the statement of the lemma holds for i = k+1.

Conclusion: Since both the base case and the inductive step have been proved as true, by mathematical induction the

statement of the lemma holds for every i = 1 . . . n.

Lemma 2. ∀i ∈ {1, . . . , n}, it holds that

vec (Gi) ∼ NC (0NRNT
, INRNT

) ,

where Gi, i = 1 . . . n is defined in (2) with 0 ≤ α < 1.

Proof. Clearly, the statement of the lemma holds for α = 0. Now, let 0 < α < 1. The statement of the lemma is valid for

i = 1. Let i ∈ {2, . . . , n} be fixed arbitrarily. Let G′
1 =

√
α
i−1

G1 and W′
j =

√
1− α

√
α
i−j

Wj for every j ∈ {2, . . . , i}.
Since G1 and Wj, j = 2, . . . , n are independent, it follows that G′

1 and W ′
j , j = 2, . . . , n are also independent. Since

vec (G1) ∼ NC (0NRNT
, INRNT

) and vec (Wj) ∼ NC (0NRNT
, INRNT

) for every j ∈ {2, . . . i}, it follows that

vec (G′
1) ∼ NC

(

0NRNT
, αi−1INRNT

)

and that for every j ∈ {2, . . . , i}

vec
(

W ′
j

)

∼ NC

(

0NRNT
, (1− α)αi−jINRNT

)

.

Now, from Lemma 1, it follows that

Gi = G′
1 +

i
∑

j=2

W′
j .

As a result,

vec (Gi) ∼ NC



0NRNT
,



αi−1 + (1− α)

i
∑

j=2

αi−j



 INRNT



 .
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For 0 < α < 1, we have

i
∑

j=2

αi−j = αi
i
∑

j=2

(
1

α
)j

= αi(
1

α
)2
1− ( 1

α )
i−1

1− 1
α

=
αi − α

α2 − α

=
1− αi−1

1− α
.

It follows that

αi−1 + (1− α)
i
∑

j=2

αi−j = 1.

This yields

vec (Gi) ∼ NC (0NRNT
, INRNT

) ∀i ∈ {1, . . . n}.

Lemma 3. Let i1, i2 ∈ {1, . . . , n}. Assume without loss of generality that i1 < i2. We consider the gain model presented in

(2). Then, for 0 < α < 1, it holds that

Gi2 =
√
α
i2−i1

Gi1 +
√
1− α

i2
∑

j=i1+1

√
α
i2−j

Wj .

Proof. By Lemma 1, it holds that

Gi2 =
√
α
i2−1

G1 +
√
1− α

i2
∑

j=2

√
α
i2−j

Wj.

and that

Gi1 =
√
α
i1−1

G1 +
√
1− α

i1
∑

j=2

√
α
i1−j

Wj.

Thus

Gi2 −
√
α
i2−i1

Gi1

=
√
α
i2−1

G1 +
√
1− α

i2
∑

j=2

√
α
i2−j

Wj −
√
α
i2−i1





√
α
i1−1

G1 +
√
1− α

i1
∑

j=2

√
α
i1−j

Wj





=
√
α
i2−1

G1 +
√
1− α

i2
∑

j=2

√
α
i2−j

Wj −
√
α
i2−1

G1 −
√
1− α

i1
∑

j=2

√
α
i2−j

Wj

=
√
1− α

i2
∑

j=i1+1

√
α
i2−j

Wj .
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C. Achievable Rate and Capacity

Next, we define an achievable rate for the channel WGn and the corresponding capacity. For this purpose, we begin by

providing the definition of a transmission-code for WGn .

Definition 1. A transmission-code Γ of length n and size1 ‖Γ‖ with average power constraint P for the channel WGn is a

family of pairs
{

(tℓ,D(gn)
ℓ ) : vec (g)

n ∈ CNRNT×n, ℓ = 1, . . . , ‖Γ‖
}

such that for all ℓ, j ∈ {1, . . . , ‖Γ‖} and all gn for

which vec (g)
n ∈ CNRNT×n, we have:

tℓ ∈ C
NT×n, D(gn)

ℓ ⊂ C
NR×n,

1

n

n
∑

i=1

tHℓ,itℓ,i ≤ P tℓ = (tℓ,1, . . . , tℓ,n), (3)

D(gn)
ℓ ∩ D(gn)

j = ∅, ℓ 6= j.

Here, tℓ, ℓ = 1, . . . , ‖Γ‖ and D(gn)
ℓ , ℓ = 1, . . . , ‖Γ‖, are the codewords and the decoding regions, respectively.

Definition 2. A real number R is called an achievable rate of the channel WGn if for every θ, δ > 0 there exists a code

sequence (Γn)
∞
n=1, where each code Γn of length n is defined according to Definition 1, such that

log‖Γn‖
n

≥ R − δ

and

emax(Γn) = max
ℓ∈{1...‖Γn‖}

E

[

WGn(D(Gn)c
ℓ |tℓ)

]

≤ θ

for sufficiently large n.

Definition 3. The supremum of all achievable rates defined according to Definition 2 is called the capacity of the fading

channel WGn and is denoted by C(P,NR ×NT ).

D. Main Result

In this section, we present the main result of our work, which is a single-letter characterization of the time-varying MIMO

Gauss-Markov Rayleigh fading channel. This is illustrated in the following theorem.

Theorem 1. Let G be any random matrix with i.i.d. entries such that vec(G) ∼ NC(0NRNT
, INRNT

). A single-letter

characterization of the capacity of the channel in (1) with gain model in (2) with 0 ≤ α < 1 is

C(P,NR ×NT ) = max
Q∈Q(P,NT )

E

[

log det

(

INR
+

1

σ2
GQGH

)]

.

The proof of Theorem 1 is provided in Section III.

E. Auxiliary Result

For the proof of Theorem 1, we require the following auxiliary result on the normalized information density of WGn .

Lemma 4. Let T n = (T1, . . . ,Tn) be an n-length input sequence of the channel WGn in (1) with gain model in (2) such that

0 < α < 1 and such that the Tis are i.i.d., where Ti ∼ N
(

0NT
, Q̃
)

, i = 1 . . . n, and Q̃ ∈ Q(P,NT ). Let Zn = (Z1, . . . ,Zn)

be the corresponding output sequence. Then, it holds that

var

(

i (T n;Zn,Gn)

n

)

≤ κ(n),

where κ(n) = 2c′

n(1−√
α)

+ c′′

n for some c′, c′′ > 0 and where lim
n→∞

κ(n) = 0.

The proof of Lemma 4 is provided in Section IV.

III. PROOF OF THEOREM 1

The result of Theorem 1 is well-known for α = 0 [17]. The proof is then restricted for 0 < α < 1.

1This is the same notation used in [19].
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A. Direct Proof

Let

Rmax = max
Q∈Q(P,NT )

E

[

log det

(

INR
+

1

σ2
GQGH

)]

,

where G ∈ CNR×NT is any random matrix with i.i.d. entries such that vec (G) ∼ NC (0NRNT
, INRNT

) . We are going to

show that

C(P,NR ×NT ) ≥ Rmax − ǫ,

with ǫ being an arbitrarily small positive constant. Let θ, δ > 0 and

En = {tn = (t1, . . . , tn) ∈ C
NT×n :

1

n

n
∑

i=1

‖ti‖2 ≤ P}.

We define for any Q ∈ Q(P,NT ),

φ(Q) = E

[

log det

(

INR
+

1

σ2
GQGH

)]

.

Now notice that any Q ∈ Q(P,NT ), we have

log det

(

INR
+

1

σ2
GQGH

)

(a)

≤ log det

(

INR
+

1

σ2
‖GQGH‖INR

)

= log det

([

1 +
1

σ2
‖GQGH‖

]

INR

)

= NR log(1 +
1

σ2
‖GQGH‖)

≤ NR

ln(2)σ2
‖GQGH‖

≤ NR

ln(2)σ2
‖Q‖‖G‖2

(b)

≤ PNR

ln(2)σ2
‖G‖2,

where (a) follows because A � ‖A‖In for any Hermitian A ∈ C
n×n (by Lemma 10 in the Appendix) and (b) follows because

‖Q‖ = λmax(Q) ≤ tr(Q) ≤ P. Now, it holds that E

[

PNR

ln(2)σ2 ‖G‖2
]

< ∞ since E
[

‖G‖2
]

< ∞ (from Lemma 13 in the

Appendix). Therefore, it follows from the dominated convergence theorem that φ is continuous on the compact set Q(P,NT ).

Therefore, one can find a Q̃ ∈ Q(P,NT ) such that tr(Q̃) = P − β for some β > 0 and such that

φ(Q̃) ≥ Rmax − ǫ. (4)

We define

P̂ = P − β

and

β̂ =
β

ln(2)P̂
− log(1 +

β

P̂
) > 0. (5)

Let us now introduce the following well-known lemma:

Lemma 5. (Feinstein’s Lemma with input constraints) [20] Let n > 0 be fixed arbitrarily. Consider any channel with random

input sequence T n, with corresponding random channel output sequence Zn and with information density i(T n;Zn). Then,

for any integer τ > 0, real number γ > 0, and measurable set En, there exists a code with cardinality τ , maximum error

probability ǫn and block-length n, whose codewords are contained in the set En, where ǫn satisfies

ǫn ≤ P

[

1

n
i(T n;Zn) ≤ log τ

n
+ γ

]

+ P [T n /∈ En] + 2−nγ .

6



Let T n = (T1, . . . ,Tn) ∈ CNT×n to be the random input sequence of the channel WGn , where the Tis are i.i.d. such

that Ti ∼ NC

(

0NT
, Q̃
)

, i = 1 . . . n. We denote its corresponding random output sequence by Zn = (Z1, . . . ,Zn). Now, we

apply Lemma 5 for En = {tn = (t1, . . . , tn) ∈ CNT×n : 1
n

∑n
i=1‖ti‖2 ≤ P} and for γ = δ

4 . It follows that there exists a

code sequence (Γn)
∞
n=1, where each code Γn is defined according to Definition 1 such that

emax(Γn) ≤ P

[

1

n
i(T n;Zn,Gn) ≤ 1

n
log‖Γn‖+

δ

4

]

+ P [T n /∈ En] + 2−n δ
4 , (6)

where here Gn is viewed as a second output sequence of WGn because we assume CSIR and where

emax(Γn) = max
ℓ∈{1...‖Γn‖}

E

[

WGn(D(Gn)c
ℓ |tℓ)

]

= max
ℓ∈{1...|M|}

E

[

P

[

M̂ 6= ℓ|M = ℓ,Gn
]]

= max
ℓ∈{1...|M|}

P

[

M̂ 6= ℓ|M = ℓ
]

,

with M, M̂ being the random message and the random decoded message and with M being the set of messages.

Choose ‖Γn‖ such that for sufficiently large n

Rmax − ǫ− δ ≤ log‖Γn‖
n

≤ Rmax − ǫ− δ

2
.

It follows that

emax(Γn) ≤ P

[

1

n
i(T n;Zn,Gn) ≤ Rmax − ǫ− δ

2

]

+ P [T n /∈ En] + 2−n δ
4

≤ P

[

1

n
i(T n;Zn,Gn) ≤ φ(Q̃)− δ

2

]

+ P [T n /∈ En] + 2−n δ
4 , (7)

where we used (4) in the last step. It remains to find upper-bounds for P
[

1
n i(T

n;Zn,Gn) ≤ φ(Q̃)− δ
2

]

and for P [T n /∈ En]

that vanish as n goes to infinity.

1) Upper-bound for P [T n /∈ En]: We will prove that

P [T n /∈ En] ≤ 2−nβ̂,

where β̂ is defined in (5). For this purpose, we will introduce and prove the following lemma:

Lemma 6. Let Xi, i = 1, . . . , n be i.i.d.N -dimensional complex Gaussian random vectors with mean 0N and covariance

matrix O whose trace is smaller than or equal to ρ. Then, for any δ > 0

P

[

n
∑

i=1

‖Xi‖2 ≥ n(ρ+ δ)

]

≤
[

(1 +
δ

ρ
)2−

δ
ln(2)ρ

]n

,

where

‖Xi‖2 =
N
∑

j=1

|Xj
i |2

and

Xi = (X1
i , . . . ,X

N
i )T .

Proof. Let X be a random vector with the same distribution as each of the Xi. Then

P

[

n
∑

i=1

‖Xi‖2 ≥ n(ρ+ δ)

]

= P

[

n
∑

i=1

‖Xi‖2 − n(ρ+ δ) ≥ 0

]

≤ E

[

exp

(

β

(

n
∑

i=1

‖Xi‖2 − n(ρ+ δ

))]

=
[

exp(−[ρ+ δ]β)E
[

exp(β‖X‖2
]]n

, (8)

7



where we used the Xis are i.i.d.. By a standard calculation which follows below, one can show that

E
[

exp(β‖X‖2)
]

= E
[

exp(βXHX)
]

=

N
∏

j=1

(1 − βµj)
−1 β < β0,

where µ1, . . . , µN are the eigenvalues of O, and for β0 = 1
ρ ≤ 1

µ1+...+µN
≤ min

j∈{1,...,N}
1
µj

so that all the factors are positive,

whether O is non-singular or singular. To prove this, we let r be the rank of O. It holds that r ≤ N . We make use of the

spectral decomposition theorem to express O as S⋆
OΛ⋆S⋆

O
H , where Λ⋆ is a diagonal matrix whose first r diagonal elements

are positive and where the remaining diagonal elements are equal to zero. Next, we let V⋆ = S⋆
OΛ⋆ 1

2 and remove the N − r
last columns of V⋆, which are null vectors to obtain the matrix V. Then, it can be verified that O = VVH . We can write

X = VU⋆ where U⋆ ∼ NC(0, Ir). As a result:

XHX = (U⋆)
H
VHVU⋆.

Let S be a unitary matrix which diagonalizes VHV such that SHVHVS = Diag(µ1, . . . , µr) with µ1, . . . , µr being the

positive eigenvalues of O = VVH in decreasing order. One defines U = SHU⋆. We have

cov(U) = SHcov(U⋆)S

= SHS

= Ir.

Therefore, it holds that U ∼ NC(0, Ir). Since S is unitary, we have

XHX =
(

(SH)−1U
)H

VHV(SH)−1U

= UHSHVHVSU

= UHDiag(µ1, . . . , µr)U

=

r
∑

j=1

µj |Uj |2.

Then, we have

E
[

exp(β‖X‖2)
]

= E





r
∏

j=1

exp(
1

2
βµj2|Uj |2)





=
r
∏

j=1

E

[

exp(
1

2
βµj2|Uj |2)

]

=

N
∏

j=1

(1 − βµj)
−1,

where we used that all the Uj’s are independent, that ∀j ∈ {1, . . . , r}, 2|Uj |2 is chi-square distributed with k = 2 degrees of

freedom and with moment generating function equal to E
[

exp(2t|Uj |2)
]

= (1− 2t)−k/2 for t < 1
2 and that ∀j ∈ {1, . . . , r}

and for β < β0,
1
2βµj <

1
2 . This completes the standard calculation.

Now, it holds that
N
∏

i=1

(1− βµi) ≥ 1− β(µ1 + . . .+ µN ) ≥ 1− βρ.

This yields

exp(−(ρ+ δ)β)E
[

exp(β‖X‖2
]

≤ exp(−(ρ+ δ)β)

1− βρ
,

8



where 0 < β < 1
ρ = β0. Putting β = δ

ρ(δ+ρ) < 1
ρ yields

exp(−(ρ+ δ)β)E
[

exp(β‖X‖2)
]

≤ (1 +
δ

ρ
) exp(− δ

ρ
)

= (1 +
δ

ρ
)2(−

δ
ln(2)ρ

),

which combined with (8) proves the lemma.

By Lemma 6, it holds that

P

[

n
∑

i=1

‖Ti‖2 ≥ n(P̂ + β)

]

≤
[

(1 +
β

P̂
)2

(− β

ln(2)P̂
)
]n

= 2

(

−n β

ln(2)P̂
+n log(1+ β

P̂
)
)

= 2−nβ̂.

As a result, we have

P [T n /∈ En] = P

[

n
∑

i=1

‖Ti‖2 > nP

]

≤ P

[

n
∑

i=1

‖Ti‖2 ≥ n(P̂ + β)

]

≤ 2−nβ̂. (9)

2) Upper-bound for P

[

1
n i(T

n;Zn,Gn) ≤ φ(Q̃)− δ
2

]

: Let us introduce the following lemma:

Lemma 7.

i(T n;Zn,Gn) =

n
∑

i=1

i(Ti;Zi,Gi).

Proof. We have

i(T n;Zn,Gn) = log

(

pTn,Zn,Gn (T n,Zn,Gn)

pZn,Gn (Zn,Gn) pTn(T n)

)

= log

(

pZn,Gn|Tn (Zn,Gn|T n)

pZn,Gn (Zn,Gn)

)

.

Since Gn and T n are independent, we have

log

(

pZn,Gn|Tn (Zn,Gn|T n)

pZn,Gn (Zn,Gn)

)

= log

(

pZn|Gn,Tn (Zn|Gn,T n)

pZn|Gn (Zn|Gn)

)

.

Furthermore, since conditioned on (Gn,T n), the outputs are independent, we have

log

(

pZn|Gn,Tn (Zn|Gn,T n)

pZn|Gn (Zn|Gn)

)

= log

(
∏n

i=1 pZi|Gn,Tn (Zi|Gn,T n)

pZn|Gn (Zn|Gn)

)

.

This yields

i(T n;Zn,Gn)

= log

(
∏n

i=1 pZi|Gn,Tn (Zi|Gn,T n)

pZn|Gn (Zn|Gn)

)

(a)
= log

(
∏n

i=1 pZi|Gi,Ti
(Zi|Gi,Ti)

pZn|Gn (Zn|Gn)

)

,

where (a) follows because

G1T1 . . .Gi−1Ti−1Gi+1Ti+1 . . .GnTnZ
i−1 ◦− GiTi ◦− Zi

9



forms a Markov chain.

Now since conditioned on Gn and for independent inputs, the outputs are independent, we have

log

(
∏n

i=1 pZi|Gi,Ti
(Zi|Gi,Ti)

pZn|Gn (Zn|Gn)

)

= log

(
∏n

i=1 pZi|Gi,Ti
(Zi|Gi,Ti)

∏n
i=1 pZi|Gn (Zi|Gn)

)

.

It follows that

i(T n;Zn,Gn)

= log

(
∏n

i=1 pZi|Gi,Ti
(Zi|Gi,Ti)

∏n
i=1 pZi|Gn (Zi|Gn)

)

(b)
= log

(
∏n

i=1 pZi|Gi,Ti
(Zi|Gi,Ti)

∏n
i=1 pZi|Gi

(Zi|Gi)

)

= log

(

n
∏

i=1

pZi|Gi,Ti
(Zi|Gi,Ti)

pZi|Gi
(Zi|Gi)

)

=

n
∑

i=1

log

(

pZi|Gi,Ti
(Zi|Gi,Ti)

pZi|Gi
(Zi|Gi)

)

=

n
∑

i=1

log

(

pZi|Gi,Ti
(Zi|Gi,Ti) pGi,Ti

(Gi,Ti)

pZi|Gi
(Zi|Gi) pGi,Ti

(Gi,Ti)

)

(c)
=

n
∑

i=1

log

(

pZi,Gi,Ti
(Zi,Gi,Ti)

pZi,Gi
(Zi,Gi) pTi

(Ti)

)

=
n
∑

i=1

i(Ti;Zi,Gi),

where (b) follows because conditioned on Gi, Zi is independent of G1, . . . ,Gi−1,Gi+1, . . . ,Gn since (Ti, ξi) is independent

of G1, . . . ,Gi−1,Gi+1, . . . ,Gn and (c) follows because Ti and Gi are independent for i = 1 . . . n.

Now, recall that we chose the inputs T n of WGn to be i.i.d such that Ti ∼ NC

(

0NT
, Q̃
)

, i = 1 . . . n. We have using

Lemma 7

E

[

1

n
i(T n;Zn,Gn)

]

=
1

n
E

[

n
∑

i=1

i(Ti;Zi,Gi)

]

=
1

n

n
∑

i=1

E [i(Ti;Zi,Gi)]

=
1

n

n
∑

i=1

I(Ti;Zi,Gi)

=
1

n

n
∑

i=1

(I(Ti;Zi|Gi) + I(Ti,Gi))

=
1

n

n
∑

i=1

I(Ti;Zi|Gi)

(a)
=

1

n

n
∑

i=1

E

[

log det

(

INR
+

1

σ2
GiQ̃GH

i

)]

(b)
= E

[

log det

(

INR
+

1

σ2
GQ̃GH

)]

= φ(Q̃),

10



where (a) follows because ξi ∼ NC(0NR
, σ2INR

), i = 1, . . . , n and because all the T ′
i s are i.i.d. such that Ti ∼

NC

(

0NT
, Q̃
)

, i = 1 . . . n. and (b) follows because from Lemma 2, we know that vec (Gi) ∼ NC (0NRNT
, INRNT

) , i = 1 . . . n

and because vec (G) ∼ NC (0NRNT
, INRNT

) . It follows that

P

[

1

n
i(T n;Zn,Gn) ≤ φ(Q̃)− δ

2

]

= P

[

1

n
i(T n;Zn,Gn) ≤ E

[

1

n
i(T n;Zn,Gn)

]

− δ

2

]

≤ P

[∣

∣

∣

∣

∣

1

n
i(T n;Zn,Gn)− E

[

1

n
i(T n;Zn,Gn)

]

∣

∣

∣

∣

∣

≥ δ

2

]

(a)

≤
4var

(

i(Tn;Zn,Gn)
n

)

δ2
(b)

≤ 4κ(n)

δ2
, (10)

where (a) follows from the Chebyshev’s inequality and (b) follows because var
(

i(T n;Zn,Gn)
n

)

≤ κ(n) for some κ(n) > 0

with lim
n→∞

κ(n) = 0 (from the auxiliary result of Lemma 4).

From (7), (9) and (10), we obtain

emax(Γn) ≤ 4
κ(n)

δ2
+ 2−nβ̂ + 2−n δ

4 ,

where lim
n→∞

4κ(n)
δ2 + 2−nβ̂ + 2−n δ

4 = 0. Therefore, for sufficiently large n, it holds that emax(Γn) ≤ θ. This completes the

direct proof of Theorem 1.

B. Converse Proof

Let R be any achievable rate for the channel WGn in (1). So, for every θ, δ > 0, there exists a code sequence (Γn)
∞
n=1 such

that
log‖Γn‖

n
≥ R − δ

and

emax(Γn) = max
ℓ∈{1...‖Γn‖}

E

[

WGn(D(Gn)c
ℓ |tℓ)

]

≤ θ (11)

for sufficiently large n.

Notice that from (11), it follows that the average error probability is also bounded from above by θ. The uniformly-distributed

message M is mapped to the random input sequence T n = (T1, . . . ,Tn) of the channel in (1), where the covariance matrix

of each input Ti is denoted by Qi. Let (Zn,Gn) the corresponding outputs, where Zn = (Z1, . . . ,Zn). We define Q⋆ such

that Q⋆ = 1
n

∑n
i=1 Qi. We model the random decoded message by M̂. The set of messages is denoted by M.

Lemma 8.

tr(Q⋆) ≤ P

Proof. From (3), it holds that

1

n

n
∑

i=1

TH
i Ti ≤ P, almost surely.

This implies that

E

[

1

n

n
∑

i=1

TH
i Ti

]

=
1

n

n
∑

i=1

E
[

TH
i Ti

]

≤ P.

11



This yields

tr [Q⋆] = tr

[

1

n

n
∑

i=1

Qi

]

=
1

n

n
∑

i=1

tr [Qi]

≤ 1

n

n
∑

i=1

tr
(

E
[

TiT
H
i

])

=
1

n

n
∑

i=1

E
[

tr
(

TiT
H
i

)]

=
1

n

n
∑

i=1

E
[

tr
(

TH
i Ti

)]

=
1

n

n
∑

i=1

E
[

TH
i Ti

]

≤ P,

where we used r = tr(r) for scalar r, tr (AB) = tr (BA) and the linearity of the expectation and of the trace operators.

By using Γn as a transmission-code for the channel WGn , it follows using the fact that M and Gn are independent that

P

[

M̂ 6= M
]

= E

[

P

[

M 6= M̂ |Gn
]]

= E





|M|
∑

ℓ=1

P[M = ℓ]P
[

M̂ 6= ℓ|M = ℓ,Gn
]





=

|M|
∑

ℓ=1

P[M = ℓ]E
[

P

[

M̂ 6= ℓ|M = ℓ,Gn
]]

=

|M|
∑

ℓ=1

P[M = ℓ]E
[

WGn(D(Gn)c
ℓ |tℓ)

]

≤ emax(Γn)

≤ θ.

Now, we have

H(M) = log |M|
= log‖Γn‖
≥ n(R− δ).

By applying Fano’s inequality, we obtain

H(M |M̂) ≤ 1 + P

[

M 6= M̂
]

log|M|
≤ 1 + θ log|M|
= 1 + θH(M).

Now, on the one hand, it holds that

I(M ; M̂) = H(M)−H(M |M̂)

≥ (1− θ)H(M)− 1,

which yields

H(M) ≤ 1 + I(M ; M̂)

1− θ
.
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On the other hand

1

n
I(M ; M̂)

(a)

≤ 1

n
I(T n;Zn,Gn)

=
1

n
I(T n;Zn|Gn) +

1

n
I(T n,Gn)

(b)
=

1

n
I(T n;Zn|Gn)

(c)
=

1

n

n
∑

i=1

I(Zi;T
n|Gn,Zi−1)

=
1

n

n
∑

i=1

h(Zi|Gn,Zi−1)− h(Zi|Gn,T n,Zi−1)

(d)
=

1

n

n
∑

i=1

h(Zi|Gn,Zi−1)− h(Zi|Gi,Ti)

(e)

≤ 1

n

n
∑

i=1

h(Zi|Gi)− h(Zi|Gi,Ti)

=
1

n

n
∑

i=1

I(Ti;Zi|Gi)

(f)

≤ 1

n

n
∑

i=1

E

[

log det(INR
+

1

σ2
GiQiG

H
i )

]

(g)
=

1

n

n
∑

i=1

E

[

log det(INR
+

1

σ2
GQiG

H)

]

= E

[

1

n

n
∑

i=1

log det(INR
+

1

σ2
GQiG

H)

]

(h)

≤ E

[

log det

(

1

n

n
∑

i=1

[

INR
+

1

σ2
GQiG

H

]

)]

= E

[

log det

(

INR
+

1

σ2
G

(

1

n

n
∑

i=1

Qi

)

GH

)]

= E

[

log det

(

INR
+

1

σ2
GQ⋆GH

)]

(i)

≤ max
Q∈Q(P,NT )

E

[

log det

(

INR
+

1

σ2
GQGH

)]

,

where (a) follows from the Data Processing Inequality because M ◦− T n ◦− Gn,Zn ◦− M̂ forms a Markov chain, (b) follows

because Gn and T n are independent, (c) follows from the chain rule for mutual information, (d) follows because

G1T1 . . .Gi−1Ti−1Gi+1Ti+1 . . .GnTnZ
i−1 ◦− GiTi ◦− Zi

forms a Markov chain, (e) follows because conditioning does not increase entropy, (f) follows because ξi ∼
NC

(

0NR
, σ2INR

)

, i = 1 . . . n, (g) follows because the Gis are identically distributed from Lemma 2 where G is a random

matrix that has the same distribution as each of the Gi and (h) follows from Jensen’s Inequality since the function log ◦ det is

concave on the set of Hermitian positive semidefinite matrices and since INR
+ 1

σ2GQiG
H is Hermitian positive semidefinite

for i = 1 . . . n, (i) follows because Q⋆ = 1
n

∑n
i=1 Qi ∈ Q(P,NT ) from Lemma 8.

As a result, we have

n(R− δ) ≤
n max
Q∈Q(P,NT )

E
[

log det
(

INR
+ 1

σ2GQGH
)]

+ 1

1− θ
.
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This implies that

R ≤
max

Q∈Q(P,NT )

E
[

log det
(

INR
+ 1

σ2GQGH
)]

+ 1
n

1− θ
+ δ. (12)

In particular, we can choose δ, θ > 0 to be arbitrarily small such that the right-hand side of (12) is equal to

max
Q∈Q(P,NT )

E
[

log det
(

INR
+ 1

σ2GQGH
)]

+δ′ for n → ∞, with δ′ being an arbitrarily small positive constant. This completes

the converse proof of Theorem 1.

IV. PROOF OF LEMMA 4

Let T n = (T1, . . . ,Tn) be an n-length input sequence of the channel WGn such that the T ′
i s are i.i.d., where Ti ∼

N
(

0NT
, Q̃
)

, i = 1 . . . n and where Q̃ ∈ Q(P,NT ). Let Zn be the corresponding output sequence, where Zn = (Z1, . . . ,Zn).

By Lemma 7, it holds that

i(T n;Zn,Gn) =

n
∑

i=1

i(Ti;Zi,Gi). (13)

We have

var

(

i(T n;Zn,Gn)

n

)

=
1

n2
E
[

i(T n;Zn,Gn)2
]

− 1

n2
E [i(T n;Zn,Gn)]

2
. (14)

Let G̃ be any random matrix with i.i.d. entries, independent of G1 and Wi, i = 2, . . . n such that vec(G̃) ∼
NC (0NRNT

, INRNT
) . By Lemma 2, it follows that G̃ has the same distribution as Gi, i = 1, . . . n. Furthermore, since

G̃ is independent of G1 and Wi, i = 2, . . . n, it is also independent of all the Gis. Now

1

n2
E
[

i(T n;Zn,Gn)2
]

=
1

n2
E





(

n
∑

i=1

i(Ti;Zi,Gi)

)2




=
1

n2

n
∑

i=1

n
∑

k=1,k 6=i

E [i(Ti;Zi,Gi)i(Tk;Zk,Gk)] +
1

n2

n
∑

i=1

E
[

i(Ti;Zi,Gi)
2
]

=
1

n2

n
∑

i=1

n
∑

k=1,k 6=i

E [E [i(Ti;Zi,Gi)i(Tk;Zk,Gk)|Gi,Gk]] +
1

n2

n
∑

i=1

E
[

i(Ti;Zi,Gi)
2
]

(a)
=

1

n2

n
∑

i=1

n
∑

k=1,k 6=i

E [E [i(Ti;Zi,Gi)|Gi,Gk]E [i(Tk;Zk,Gk)|Gi,Gk]] +
1

n2

n
∑

i=1

E
[

i(Ti;Zi,Gi)
2
]

(b)
=

1

n2

n
∑

i=1

n
∑

k=1,k 6=i

E [E [i(Ti;Zi,Gi)|Gi]E [i(Tk;Zk,Gk)|Gk]] +
1

n2

n
∑

i=1

E
[

i(Ti;Zi,Gi)
2
]

(c)
=

1

n2

n
∑

i=1

n
∑

k=1,k 6=i

E

[

log det(INR
+

1

σ2
GiQ̃GH

i ) log det(INR
+

1

σ2
GkQ̃GH

k )

]

+
1

n2

n
∑

i=1

E
[

i(Ti;Zi,Gi)
2
]

, (15)

where (a) follows because for independent inputs and conditioned on (Gi,Gj), i(Ti;Zi,Gi) and i(Tj;Zj ,Gj) are

independent, (b) follows because for independent inputs and conditioned on Gi, i(Ti;Zi,Gi) and Gk are independent,

and because for independent inputs and conditioned on Gk, i(Tk;Zk,Gk) and Gi are independent, and (c) follows because

ξi ∼ NC(0NR
, σ2INR

), i = 1, . . . , n and because all the Tis are i.i.d. such that Ti ∼ NC

(

0NT
, Q̃
)

, i = 1 . . . n.
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It holds using (13) that

1

n2
E [i(T n;Zn,Gn)]

2
=

1

n2
E

[

n
∑

i=1

i(Ti;Zi,Gi)

]2

=
1

n2

(

n
∑

i=1

E [i(Ti;Zi,Gi)]

)2

≥ 1

n2

n
∑

i=1

n
∑

k=1,k 6=i

E [i(Ti;Zi,Gi)]E [i(Tk;Zk,Gk)]

=
1

n2

n
∑

i=1

n
∑

k=1,k 6=i

E [E [i(Ti;Zi,Gi)|Gi]]E [E [i(Tk;Zk,Gk)|Gk]]

=
1

n2

n
∑

i=1

n
∑

k=1,k 6=i

E

[

log det(INR
+

1

σ2
GiQ̃GH

i )

]

E

[

log det(INR
+

1

σ2
GkQ̃GH

k )

]

=
1

n2

n
∑

i=1

n
∑

k=1,k 6=i

E

[

log det

(

INR
+

1

σ2
G̃Q̃G̃H

)]2

. (16)

It follows from (14), (15) and (16) that

var

(

i(T n;Zn,Gn)

n

)

≤ 1

n2

n
∑

i=1

n
∑

k=1,k 6=i

E

[

log det(INR
+

1

σ2
GiQ̃GH

i ) log det(INR
+

1

σ2
GkQ̃GH

k )

]

+
1

n2

n
∑

i=1

E
[

i(Ti;Zi,Gi)
2
]

− 1

n2

n
∑

i=1

n
∑

k=1,k 6=i

E

[

log det

(

INR
+

1

σ2
G̃Q̃G̃H

)]2

=
1

n2

n
∑

i=1

n
∑

k=1,k 6=i

(

E

[

log det(INR
+

1

σ2
GiQ̃GH

i ) log det(INR
+

1

σ2
GkQ̃GH

k )

]

− E

[

log det

(

INR
+

1

σ2
G̃Q̃G̃H

)]2
)

+
1

n2

n
∑

i=1

E
[

i(Ti;Zi,Gi)
2
]

. (17)

By defining for any i, k ∈ {1, . . . n} with i 6= k,

m(i, k) = E

[

log det(INR
+

1

σ2
GiQ̃GH

i ) log det(INR
+

1

σ2
GkQ̃GH

k )

]

− E

[

log det

(

INR
+

1

σ2
G̃Q̃G̃H

)]2

,

we obtain using (17)

var

(

i(T n;Zn,Gn)

n

)

≤ 1

n2

n
∑

i=1

n
∑

k=1,k 6=i

m(i, k) +
1

n2

n
∑

i=1

E
[

i(Ti;Zi,Gi)
2
]
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=
1

n2

n
∑

i=1

i−1
∑

k=1

m(i, k) +
1

n2

n
∑

i=1

n
∑

k=i+1

m(i, k) +
1

n2

n
∑

i=1

E
[

i(Ti;Zi,Gi)
2
]

. (18)

Now, the goal is to find a suitable upper-bound for each term in (18).

A. Upper-bound for 1
n2

∑n
i=1

∑i−1
k=1 m(i, k) + 1

n2

∑n
i=1

∑n
k=i+1 m(i, k)

We are going to show that

1

n2

n
∑

i=1

i−1
∑

k=1

m(i, k) +
1

n2

n
∑

i=1

n
∑

k=i+1

m(i, k) ≤ 2c′

n(1−√
α)

,

for some c′ > 0. Let us first introduce and prove the following Lemma

Lemma 9. Let i1, i2 ∈ {1, . . . n}. Assume without loss of generality that i1 < i2, then

E

[

log det(INR
+

1

σ2
Gi2Q̃GH

i2 ) log det(INR
+

1

σ2
Gi1Q̃GH

i1 )

]

≤ E

[

log det

(

INR
+

1

σ2
G̃Q̃G̃H

)]2

+ c′
√
α
i2−i1

,

for some c′ > 0, where G̃ is a random matrix with i.i.d. entries, independent of G1 and Wi, i = 2, . . . n, such that vec(G̃) ∼
NC (0NRNT

, INRNT
) .

Proof. By Lemma 3, we know that

Gi2 =
√
α
i2−i1

Gi1 +
√
1− α

i2
∑

j=i1+1

√
α
i2−j

Wj .

By defining

S =
√
1− α

i2
∑

j=i1+1

√
α
i2−j

Wj,

it follows that

Gi2 =
√
α
i2−i1

Gi1 + S. (19)

Define

W̃ = S+
√
α
i2−i1

G̃,

with G̃ being a random matrix with i.i.d. entries, independent of G1 and Wi, i = 2, . . . n such that vec(G̃) ∼
NC (0NRNT

, INRNT
) .

Since Wi, i = i1+1, . . . , i2, have i.i.d entries, it follows that W̃ has i.i.d. entries. Notice also that W̃ is independent of Gi1 ,
since Gi1 is independent of (S, G̃). Analogously to the proof of Lemma 2, one can show that vec(W̃) ∼ NC (0NRNT

, INRNT
) .

The proof of Lemma 9 is divided in three parts:

1) We will prove first that

log det(INR
+

1

σ2
Gi2Q̃GH

i2 )

≤ log det

(

INR
+

1

σ2
W̃Q̃W̃H

)

+
NR

ln(2)σ2

√
α
i2−i1

(

P‖Gi1‖2 + P‖G̃‖2 + 2‖W̃Q̃G̃H‖+ 2P‖Gi1‖‖S‖
)

.

2) We will prove second that

log det(INR
+

1

σ2
Gi1Q̃GH

i1 ) ≤
PNR

ln(2)σ2
‖Gi1‖2.

3) This will allow us to show that

E

[

log det(INR
+

1

σ2
Gi2Q̃GH

i2 ) log det(INR
+

1

σ2
Gi1Q̃GH

i1 )

]

≤ E

[

log det

(

INR
+

1

σ2
G̃Q̃G̃H

)]2

+ c′
√
α
i2−i1

,

for some c′ > 0.
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1) Upper-bound for log det(INR
+ 1

σ2Gi2Q̃GH
i2
) : From (19), we have

1

σ2
Gi2Q̃GH

i2

=
1

σ2

[√
α
i2−i1

Gi1 + S
]

Q̃
[√

α
i2−i1

GH
i1 + SH

]

=
1

σ2
αi2−i1Gi1Q̃GH

i1 +
1

σ2

√
α
i2−i1

Gi1Q̃SH +
1

σ2

√
α
i2−i1

SQ̃GH
i1 +

1

σ2
SQ̃SH

=
1

σ2

[

αi2−i1Gi1Q̃GH
i1 + SQ̃SH

]

+
1

σ2

√
α
i2−i1

Gi1Q̃SH +
1

σ2

√
α
i2−i1

SQ̃GH
i1 . (20)

We will prove first that

1

σ2

√
α
i2−i1

Gi1Q̃SH +
1

σ2

√
α
i2−i1

SQ̃GH
i1

� 2P

σ2

√
α
i2−i1‖Gi1‖‖S‖INR

. (21)

From Lemma 10 in the Appendix, we know that for any Hermitian matrix A ∈ Cn×n, it holds that A � ‖A‖In. Notice now

that the matrix

1

σ2

√
α
i2−i1

Gi1Q̃SH +
1

σ2

√
α
i2−i1

SQ̃GH
i1

is a Hermitian matrix since it is equal to its Hermitian transpose. It follows using Lemma 10 in the Appendix that

1

σ2

√
α
i2−i1

Gi1Q̃SH +
1

σ2

√
α
i2−i1

SQ̃GH
i1

� ‖ 1

σ2

√
α
i2−i1

Gi1Q̃SH +
1

σ2

√
α
i2−i1

SQ̃GH
i1‖INR

�
(

1

σ2

√
α
i2−i1‖Gi1‖‖Q̃‖‖SH‖+ 1

σ2

√
α
i2−i1‖S‖‖Q̃‖‖GH

i1‖
)

INR

=
2

σ2

√
α
i2−i1‖Gi1‖‖Q̃‖‖S‖INR

� 2P

σ2

√
α
i2−i1‖Gi1‖‖S‖INR

. (22)

This proves (21).

Next, we will prove that

1

σ2

[

αi2−i1Gi1Q̃GH
i1 + SQ̃SH

]

� 1

σ2
W̃Q̃W̃H +

P

σ2
αi2−i1

(

‖Gi1‖2 + ‖G̃‖2
)

INR
+

2

σ2

√
α
i2−i1‖W̃Q̃G̃H‖INR

. (23)
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It follows using the fact that W̃ = S+
√
α
i2−i1

G̃ that

SQ̃SH

=
(

S+
√
α
i2−i1

G̃−√
α
i2−i1

G̃
)

Q̃
(

SH +
√
α
i2−i1

G̃H −√
α
i2−i1

G̃H
)

=
(

W̃ −√
α
i2−i1

G̃
)

Q̃
(

W̃H −√
α
i2−i1

G̃H
)

= W̃Q̃W̃H −√
α
i2−i1

W̃Q̃G̃H −√
α
i2−i1

G̃Q̃W̃H + αi2−i1G̃Q̃G̃H .

This yields

1

σ2

[

αi2−i1Gi1Q̃GH
i1 + SQ̃SH

]

=
1

σ2

[

αi2−i1Gi1Q̃GH
i1 + W̃Q̃W̃H −√

α
i2−i1

W̃Q̃G̃H −√
α
i2−i1

G̃Q̃W̃H + αi2−i1G̃Q̃G̃H
]

=
1

σ2
W̃Q̃W̃H +

1

σ2
αi2−i1

[

Gi1Q̃GH
i1 + G̃Q̃G̃H

]

− 1

σ2

√
α
i2−i1

W̃Q̃G̃H − 1

σ2

√
α
i2−i1

G̃Q̃W̃H . (24)

Now notice that
1

σ2
αi2−i1

[

Gi1Q̃GH
i1 + G̃Q̃G̃H

]

is a Hermitian matrix. This implies using Lemma 10 that

1

σ2
αi2−i1

[

Gi1Q̃GH
i1 + G̃Q̃G̃H

]

� 1

σ2
αi2−i1‖Gi1Q̃GH

i1 + G̃Q̃G̃H‖INR

� 1

σ2
αi2−i1‖Q̃‖

(

‖Gi1‖2 + ‖G̃‖2
)

INR

� P

σ2
αi2−i1

(

‖Gi1‖2 + ‖G̃‖2
)

INR
. (25)

Notice also that − 1
σ2

√
α
i2−i1

W̃Q̃G̃H − 1
σ2

√
α
i2−i1

G̃Q̃W̃H is a Hermitian matrix. It follows using Lemma 10 that

− 1

σ2

√
α
i2−i1

W̃Q̃G̃H − 1

σ2

√
α
i2−i1

G̃Q̃W̃H

� ‖− 1

σ2

√
α
i2−i1

W̃Q̃G̃H − 1

σ2

√
α
i2−i1

G̃Q̃W̃H‖INR

� 2

σ2

√
α
i2−i1‖W̃Q̃G̃H‖INR

. (26)

As a result, we have using (25) and (26)

1

σ2
W̃Q̃W̃H +

1

σ2
αi2−i1

[

Gi1Q̃GH
i1 + G̃Q̃G̃H

]

− 1

σ2

√
α
i2−i1

W̃Q̃G̃H − 1

σ2

√
α
i2−i1

G̃Q̃W̃H

� 1

σ2
W̃Q̃W̃H +

P

σ2
αi2−i1

(

‖Gi1‖2 + ‖G̃‖2
)

INR
+

2

σ2

√
α
i2−i1‖W̃Q̃G̃H‖INR

. (27)

18



This proves (23). Thus, it follows from (24) and (27) that

1

σ2

[

αi2−i1Gi1Q̃GH
i1 + SQ̃SH

]

� 1

σ2
W̃Q̃W̃H +

P

σ2
αi2−i1

(

‖Gi1‖2 + ‖G̃‖2
)

INR
+

2

σ2

√
α
i2−i1‖W̃Q̃G̃H‖INR

. (28)

We deduce using (22) and (28) that

1

σ2

[

αi2−i1Gi1Q̃GH
i1 + SQ̃S̃

]

+
1

σ2

√
α
i2−i1

Gi1Q̃SH +
1

σ2

√
α
i2−i1

SQ̃GH
i1

� 1

σ2
W̃Q̃W̃H +

P

σ2
αi2−i1

(

‖Gi1‖2 + ‖G̃‖2
)

INR
+

2

σ2

√
α
i2−i1‖W̃Q̃G̃H‖INR

+
2P

σ2

√
α
i2−i1‖Gi1‖‖S‖INR

=
1

σ2
W̃Q̃W̃H +

P

σ2
αi2−i1

(

‖Gi1‖2 + ‖G̃‖2
)

INR
+

2

σ2

√
α
i2−i1

(

‖W̃Q̃G̃H‖+ P‖Gi1‖‖S‖
)

INR

(a)

� 1

σ2
W̃Q̃W̃H +

P

σ2

√
α
i2−i1

(

‖Gi1‖2 + ‖G̃‖2
)

INR
+

2

σ2

√
α
i2−i1

(

‖W̃Q̃G̃H‖+ P‖Gi1‖‖S‖
)

INR

=
1

σ2
W̃Q̃W̃H +

1

σ2

√
α
i2−i1

(

P‖Gi1‖2 + P‖G̃‖2 + 2‖W̃Q̃G̃H‖+ 2P‖Gi1‖‖S‖
)

INR
, (29)

where (a) follows because α <
√
α for 0 < α < 1.

Therefore, it follows from (20) and (29) that

1

σ2
Gi2Q̃GH

i2

� 1

σ2
W̃Q̃W̃H +

1

σ2

√
α
i2−i1

(

P‖Gi1‖2 + P‖G̃‖2 + 2‖W̃Q̃G̃H‖+ 2P‖Gi1‖‖S‖
)

INR
.

This yields

log det(INR
+

1

σ2
Gi2Q̃GH

i2 )

≤ log det

(

INR
+

1

σ2
W̃Q̃W̃H +

1

σ2

√
α
i2−i1

(

P‖Gi1‖2 + P‖G̃‖2 + 2‖W̃Q̃G̃H‖+ 2P‖Gi1‖‖S‖
)

INR

)

. (30)

Now by Lemma 11 in the Appendix, we know that for any positive-definite Hermitian matrix A ∈ Cn×n with smallest

eigenvalue λmin(A) and for any positive semi-definite Hermitian matrix B ∈ Cn×n, the following is satisfied:

log det(A+B) ≤ log det(A) + log det(In +
1

λmin(A)
B).

By applying Lemma 11 in the Appendix for

A = INR
+

1

σ2
W̃Q̃W̃H

and for

B =
1

σ2

√
α
i2−i1

(

P‖Gi1‖2 + P‖G̃‖2 + 2‖W̃Q̃G̃H‖+ 2P‖Gi1‖‖S‖
)

INR
,
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it follows from (30) that

log det(INR
+

1

σ2
Gi2Q̃GH

i2 )

≤ log det

(

INR
+

1

σ2
W̃Q̃W̃H

)

+ log det



INR
+

1
σ2

√
α
i2−i1

(

P‖Gi1‖2 + P‖G̃‖2 + 2‖W̃Q̃G̃H‖+ 2P‖Gi1‖‖S‖
)

λmin

(

INR
+ 1

σ2W̃Q̃W̃H
) INR





(a)

≤ log det

(

INR
+

1

σ2
W̃Q̃W̃H

)

+
1

ln(2)
tr





1
σ2

√
α
i2−i1

(

P‖Gi1‖2 + P‖G̃‖2 + 2‖W̃Q̃G̃H‖+ 2P‖Gi1‖‖S‖
)

λmin

(

INR
+ 1

σ2W̃Q̃W̃H
) INR





(b)

≤ log det

(

INR
+

1

σ2
W̃Q̃W̃H

)

+
1

ln(2)
tr

[

1

σ2

√
α
i2−i1

(

P‖Gi1‖2 + P‖G̃‖2 + 2‖W̃Q̃G̃H‖+ 2P‖Gi1‖‖S‖
)

INR

]

(c)
= log det

(

INR
+

1

σ2
W̃Q̃W̃H

)

+
NR

ln(2)σ2

√
α
i2−i1

(

P‖Gi1‖2 + P‖G̃‖2 + 2‖W̃Q̃G̃H‖+ 2P‖Gi1‖‖S‖
)

,

where (a) follows because ln det(In + A) ≤ tr(A) for positive semi-definite A, (b) follows because

λmin

(

INR
+ 1

σ2W̃Q̃W̃H
)

≥ 1 and (c) follows because tr(cINR
) = cNR for any constant c.

To conclude, we have proved that

log det(INR
+

1

σ2
Gi2Q̃GH

i2 )

≤ log det

(

INR
+

1

σ2
W̃Q̃W̃H

)

+
NR

ln(2)σ2

√
α
i2−i1

(

P‖Gi1‖2 + P‖G̃‖2 + 2‖W̃Q̃G̃H‖+ 2P‖Gi1‖‖S‖
)

. (31)

2) Upper-bound for log det(INR
+ 1

σ2Gi1Q̃GH
i1 ) : By Lemma 10 in the Appendix, we have

log det(INR
+

1

σ2
Gi1Q̃GH

i1 ) ≤ log det(INR
+

1

σ2
‖Gi1Q̃GH

i1‖INR
)

≤ 1

ln(2)
tr

[

1

σ2
‖Gi1Q̃GH

i1‖INR

]

≤ 1

ln(2)
tr

[

1

σ2
‖Gi1‖2‖Q̃‖INR

]
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=
NR

ln(2)σ2
‖Gi1‖2‖Q̃‖

≤ PNR

ln(2)σ2
‖Gi1‖2. (32)

3) Upper bound for E

[

log det(INR
+ 1

σ2Gi2Q̃GH
i2
) log det(INR

+ 1
σ2Gi1Q̃GH

i1
)
]

: Let

Λ
(

Gi1 ,S, G̃,W̃
)

= ‖Gi1‖2
(

P‖Gi1‖2 + P‖G̃‖2 + 2‖W̃Q̃G̃H‖+ 2P‖Gi1‖‖S‖
)

.

It follows using (31) and (32) that

E

[

log det(INR
+

1

σ2
Gi2Q̃GH

i2 ) log det(INR
+

1

σ2
Gi1Q̃GH

i1 )

]

≤ E

[

log det

(

INR
+

1

σ2
W̃Q̃W̃H

)

log det

(

INR
+

1

σ2
Gi1Q̃GH

i1

)]

+ E

[

NR

ln(2)σ2

√
α
i2−i1

(

P‖Gi1‖2 + P‖G̃‖2 + 2‖W̃Q̃G̃H‖+ 2P‖Gi1‖‖S‖
) PNR

ln(2)σ2
‖Gi1‖2

]

= E

[

log det

(

INR
+

1

σ2
W̃Q̃W̃H

)

log det

(

INR
+

1

σ2
Gi1Q̃GH

i1

)]

+ E

[

PN2
R

ln(2)2σ4

√
α
i2−i1‖Gi1‖2

(

P‖Gi1‖2 + P‖G̃‖2 + 2‖W̃Q̃G̃H‖+ 2P‖Gi1‖‖S‖
)

]

(a)
= E

[

log det

(

INR
+

1

σ2
W̃Q̃W̃H

)]

E

[

log det

(

INR
+

1

σ2
Gi1Q̃GH

i1

)]

+
PN2

R

ln(2)2σ4

√
α
i2−i1

E

[

Λ
(

Gi1 ,S, G̃,W̃
)]

(b)
= E

[

log det

(

INR
+

1

σ2
G̃Q̃G̃H

)]2

+
PN2

R

ln(2)2σ4

√
α
i2−i1

E

[

Λ
(

Gi1 ,S, G̃,W̃
)]

,

where (a) follows because W̃ and Gi1 are independent, (b) follows because G̃ has the same distribution as W̃ and Gi1 since

vec
(

W̃
)

∼ NC (0NRNT
, INRNT

) and since from Lemma 2, we know that vec (Gi1 ) ∼ NC (0NRNT
, INRNT

) .

Now, from Lemma 12 in the Appendix we know that E

[

Λ
(

Gi1 ,S, G̃,W̃
)]

is bounded from above by some c > 0.

Therefore it follows that for i1 < i2

E

[

log det(INR
+

1

σ2
Gi2Q̃GH

i2 ) log det(INR
+

1

σ2
Gi1Q̃GH

i1 )

]

≤ E

[

log det

(

INR
+

1

σ2
G̃Q̃G̃H

)]2

+
PN2

R

ln(2)2σ4
c
√
α
i2−i1

= E

[

log det

(

INR
+

1

σ2
G̃Q̃G̃H

)]2

+ c′
√
α
i2−i1

,

for some c > 0, where c′ = PN2
Rc

ln(2)2σ4 > 0. This completes the proof of Lemma 9.

Now that we proved Lemma 9, we will use that lemma to prove that

1

n2

n
∑

i=1

i−1
∑

k=1

m(i, k) +
1

n2

n
∑

i=1

n
∑

k=i+1

m(i, k) ≤ 2c′

n(1−√
α)

.
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We recall that for any i, k ∈ {1, . . . n} with i 6= k,

m(i, k) = E

[

log det(INR
+

1

σ2
GiQ̃GH

i ) log det(INR
+

1

σ2
GkQ̃GH

k )

]

− E

[

log det

(

INR
+

1

σ2
G̃Q̃G̃H

)]2

.

If k < i : Lemma 9 implies that

m(i, k) ≤ c′
√
α
i−k

.

If i < k : Lemma 9 implies that

m(i, k) ≤ c′
√
α
k−i

.

Therefore, we have

1

n2

n
∑

i=1

i−1
∑

k=1

m(i, k)

≤ c′

n2

n
∑

i=1

i−1
∑

k=1

√
α
i−k

≤ c′

n(1−√
α)

, (33)

because by Lemma 15 in the Appendix, we have for any 0 < α < 1

n
∑

i=1

i−1
∑

k=1

αi−k ≤ n

1− α
.

Furthermore, it holds that

1

n2

n
∑

i=1

n
∑

k=i+1

m(i, k) ≤ c′

n2

n
∑

i=1

n
∑

k=i+1

√
α
k−i

≤ c′

n(1−√
α)

(34)

because by Lemma 16 in the Appendix, we have for any 0 < α < 1

n
∑

i=1

n
∑

k=i+1

αk−i ≤ n

1− α
.

From (33) and (34), we deduce that

1

n2

n
∑

i=1

i−1
∑

k=1

m(i, k) +
1

n2

n
∑

i=1

n
∑

k=i+1

m(i, k) ≤ 2c′

n(1−√
α)

.

B. Upper-bound for 1
n2

∑n
i=1 E

[

i(Ti;Zi,Gi)
2
]

We are going to prove that

1

n2

n
∑

i=1

E
[

i(Ti;Zi,Gi)
2
]

≤ c′′

n

for some c′′ > 0. It suffices to show that E
[

i(Ti;Zi,Gi)
2
]

is bounded from above for i = 1, . . . , n. Recall that

Zi = GiTi + ξi, i = 1 . . . n

and that for i = 1 . . . n

ξi ∼ NC

(

0NR
, σ2INR

)

.
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By Lemma 17 in the Appendix, we know that for i = 1, . . . , n

i(Ti;Zi,Gi)

= log det(INR
+

1

σ2
GiQ̃GH

i )− 1

ln(2)σ2
(Zi −GiTi)

H
(Zi −GiTi) +

1

ln(2)σ2
ZH

i

(

INR
+

1

σ2
GQ̃GH

)−1

Zi.

We have

|i(Ti;Zi,Gi)|

=

∣

∣

∣

∣

∣

log det(INR
+

1

σ2
GiQ̃GH

i )− 1

ln(2)σ2
(Zi −GiTi)

H (Zi −GiTi) +
1

ln(2)σ2
ZH

i

(

INR
+

1

σ2
GQ̃GH

)−1

Zi

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

log det(INR
+

1

σ2
GiQ̃GH

i ) +
1

ln(2)σ2
ZH

i

(

INR
+

1

σ2
GiQ̃GH

i

)−1

Zi

∣

∣

∣

∣

∣

+
1

ln(2)σ2

∣

∣

∣

∣

∣

(Zi −GiTi)
H
(Zi −GiTi)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

log det(INR
+

1

σ2
GiQ̃GH

i ) +
1

ln(2)σ2
ZH

i

(

INR
+

1

σ2
GiQ̃GH

i

)−1

Zi

∣

∣

∣

∣

∣

+
1

ln(2)σ2
|ξHi ξi|

=

∣

∣

∣

∣

∣

log det(INR
+

1

σ2
GiQ̃GH

i ) +
1

ln(2)σ2
ZH

i

(

INR
+

1

σ2
GiQ̃GH

i

)−1

Zi

∣

∣

∣

∣

∣

+
1

ln(2)σ2
‖ξi‖2.

Since i(Ti;Zi,Gi) ∈ R, we have

i(Ti;Zi,Gi)
2

= |i(Ti;Zi,Gi)|2

≤
(∣

∣

∣

∣

∣

log det(INR
+

1

σ2
GiQ̃GH

i ) +
1

ln(2)σ2
ZH

i

(

INR
+

1

σ2
GiQ̃GH

i

)−1

Zi

∣

∣

∣

∣

∣

+
1

ln(2)σ2
‖ξi‖2

)2

(a)

≤ 2

(∣

∣

∣

∣

∣

log det(INR
+

1

σ2
GiQ̃GH

i ) +
1

ln(2)σ2
ZH

i

(

INR
+

1

σ2
GiQ̃GH

i

)−1

Zi

∣

∣

∣

∣

∣

)2

+
2

ln(2)2σ4
‖ξi‖4

(b)

≤ 4

[

log det(INR
+

1

σ2
GiQ̃GH

i )

]2

+
4

ln(2)2σ4

(

ZH
i (INR

+
1

σ2
GiQ̃GH

i )−1Zi

)2

+
2

ln(2)2σ4
‖ξi‖4

≤ 4

[

log det(INR
+

1

σ2
GiQ̃GH

i )

]2

+
4

ln(2)2σ4
‖(INR

+
1

σ2
GiQ̃GH

i )−1‖2‖Zi‖4 +
2

ln(2)2σ4
‖ξi‖4

(c)

≤ 4

[

log det(INR
+

1

σ2
GiQ̃GH

i )

]2

+
4

ln(2)2σ4
‖Zi‖4 +

2

ln(2)2σ4
‖ξi‖4

= 4

[

log det(INR
+

1

σ2
GiQ̃GH

i )

]2

+
4

ln(2)2σ4
‖GiTi + ξi‖4 +

2

ln(2)2σ4
‖ξi‖4

≤ 4

[

log det(INR
+

1

σ2
GiQ̃GH

i )

]2

+
4

ln(2)2σ4
(‖Gi‖‖Ti‖+ ‖ξi‖)4 +

2

ln(2)2σ4
‖ξi‖4
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(d)

≤ 4

[

log det(INR
+

1

σ2
‖GiQ̃GH

i ‖INR
)

]2

+
4

ln(2)2σ4

(

2‖Gi‖2‖Ti‖2 + 2‖ξi‖2
)2

+
2

ln(2)2σ4
‖ξi‖4

(e)

≤ 4

ln(2)2

[

tr

(

1

σ2
‖GiQ̃GH

i ‖INR

)]2

+
32

ln(2)2σ4

(

‖Gi‖4‖Ti‖4 + ‖ξi‖4
)

+
2

ln(2)2σ4
‖ξi‖4

≤ 4

ln(2)2σ4
N2

R‖Gi‖4‖Q̃‖2 + 32

ln(2)2σ4

(

‖Gi‖4‖Ti‖4 + ‖ξi‖4
)

+
2

ln(2)2σ4
‖ξi‖4

(f)

≤ 4

ln(2)2σ4
N2

RP
2‖Gi‖4 +

32

ln(2)2σ4

(

‖Gi‖4‖Ti‖4 + ‖ξi‖4
)

+
2

ln(2)2σ4
‖ξi‖4,

where (a)(b) follow because for K1,K2 ≥ 0, (K1 +K2)
2 ≤ 2K2

1 + 2K2
2 , (c) follows because ‖(INR

+ 1
σ2GiQ̃GH

i )−1‖ =
1

λmin(INR
+ 1

σ2 GiQ̃GH
i )

≤ 1, (d) follows because A � ‖A‖In for any Hermitian A ∈ Cn×n (by Lemma 10 in the Appendix) , (e)

follows because ln det(In+A) ≤ tr(A) for A positive semi-definite and because for K1,K2 ≥ 0, (K1+K2)
2 ≤ 2K2

1 +2K2
2

and (f) follows because ‖Q̃‖ = λmax(Q̃) ≤ tr(Q̃) ≤ P. This implies using the fact that Gi and Ti are independent that

E
[

i(Ti;Zi,Gi)
2
]

≤ 4P 2

ln(2)2σ4
N2

RE
[

‖Gi‖4
]

+
32

ln(2)2σ4

(

E
[

‖Gi‖4
]

E
[

‖Ti‖4
]

+ E
[

‖ξi‖4
])

+
2

ln(2)2σ4
E
[

‖ξi‖4
]

≤ 4P 2

ln(2)2σ4
N2

Rc1 +
16

ln(2)2σ4
(c1c2 + c3) +

2

ln(2)2σ4
c3

= c′′,

for some c1, c2, c3 > 0, where we used that E
[

‖Gi‖4
]

is bounded from above (by Lemma 13 in the Appendix) and that

E
[

‖Ti‖4
]

and E
[

‖ξi‖4
]

are both bounded from above (by Lemma 18 in the Appendix) and where c′′ > 0.
As a result, we have

1

n2

n
∑

i=1

E
[

i(Ti;Zi,Gi)
2
]

≤ c′′

n
.

To summarize, we have proved that

• 1
n2

∑n
i=1

∑i−1
k=1 m(i, k) + 1

n2

∑n
i=1

∑n
k=i+1 m(i, k) ≤ 2c′

n(1−√
α)

• 1
n2

∑n
i=1 E

[

i(Ti;Zi,Gi)
2
]

≤ c′′

n

Now, from (18), we know that

var

(

i(T n;Zn,Gn)

n

)

≤ 1

n2

n
∑

i=1

i−1
∑

k=1

m(i, k) +
1

n2

n
∑

i=1

n
∑

k=i+1

m(i, k) +
1

n2

n
∑

i=1

E
[

i(Ti;Zi,Gi)
2
]

.

To conclude, it follows that

var

(

i(T n;Zn,Gn)

n

)

≤ 2c′

n(1−√
α)

+
c′′

n

= κ(n),

where lim
n→∞

κ(n) = 0. This completes the proof of Lemma 4.

V. CONCLUSION

In this paper, we studied the problem of message transmission over time-varying MIMO first-order Gauss-Markov Rayleigh

fading channels with average power constraint and with CSIR, as an example of infinite-state Markov fading channels. The

novelty of our work lies in establishing a single-letter characterization of the channel capacity. As a future work, it would be

interesting to study the capacity of time-varying MIMO Rayleigh fading channels when a higher-order Gauss-Markov model

is used to describe the channel variations over the time.
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APPENDIX

A. Auxiliary Lemmas

Lemma 10. For any Hermitian matrix A ∈ Cn×n, the matrix

‖A‖In −A

is positive semi-definite.

Proof. Since A is Hermitian, we know that for any x ∈ Cn, xHAx is real. Therefore, for any x ∈ Cn \ {0},
xHAx ≤ |xHAx|

≤ ‖A‖‖x‖2.
It follows that

xH (‖A‖In −A)x = xH‖A‖Inx− xHAx

= ‖A‖‖x‖2 − xHAx

≥ 0.

Lemma 11. Let A ∈ Cn×n be any positive-definite Hermitian matrix with λmin(A) being its smallest eigenvalue and let

B ∈ Cn×n be any positive semi-definite matrix, then

log det(A+B) ≤ log det(A) + log det(In +
1

λmin(A)
B).

Proof.

det(A+B) = det(A) det(In +A−1B)

= det(A) det(In +BA−1)

= det(A) det(In +B
1
2B

1
2A−1)

= det(A) det(In +B
1
2A−1B

1
2 )

(a)

≤ det(A) det(In +B
1
2

1

λmin(A)
InB

1
2 )

= det(A) det(In +
1

λmin(A)
InB)

= det(A) det(In +
1

λmin(A)
B),

where (a) follows from the following properties:

1) For any positive semi-definite Hermitian matrices M1 and M2, if M1 −M2 is Hermitian positive semi-definite then

det (M1) ≥ det(M2).

2) For any positive definite Hermitian matrix M ∈ Cn×n, with minimum eigenvalue λmin(M), it holds that

M− λmin(M)I

is positive semi-definite,

3) For any positive definite Hermitian matrices M and M̃, if M−M̃ is positive semi-definite then M̃−1−M−1 is positive

semi-definite.

Therefore, it follows that

log det(A+B) ≤ log det(A) + log det(In +
1

λmin(A)
B).
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Lemma 12. E

[

Λ
(

Gi1 ,S, G̃,W̃
)]

≤ c for some c > 0.

Proof. Recall that

Λ
(

Gi1 ,S, G̃,W̃
)

= ‖Gi1‖2
(

P‖Gi1‖2 + P‖G̃‖2 + 2‖W̃Q̃G̃H‖+ 2P‖Gi1‖‖S‖
)

,

where

W̃ = S+
√
α
i2−i1

G̃

with i1 < i2, where S =
√
1− α

∑i2
j=i1+1

√
α
i2−j

Wj , and where G̃ is a random matrix with i.i.d. entries, independent of

G1 and Wi, i = 2, . . . n such that vec(G̃) ∼ NC (0NRNT
, INRNT

) .
We have

E

[

Λ
(

Gi1 ,S, G̃,W̃
)]

= E

[

‖Gi1‖2
(

P‖Gi1‖2 + P‖G̃‖2 + 2‖W̃Q̃G̃H‖+ 2P‖Gi1‖‖S‖
)]

= PE
[

‖Gi1‖4
]

+ PE

[

‖Gi1‖2‖G̃‖2
]

+ 2E
[

‖Gi1‖2‖W̃Q̃G̃H‖
]

+ 2PE
[

‖Gi1‖3‖S‖
]

= PE
[

‖Gi1‖4
]

+ PE
[

‖Gi1‖2
]

E

[

‖G̃‖2
]

+ 2E
[

‖Gi1‖2
]

E

[

‖W̃Q̃G̃H‖
]

+ 2PE
[

‖Gi1‖3
]

E [‖S‖]

= PE

[

‖G̃‖4
]

+ PE

[

‖G̃‖2
]2

+ 2E
[

‖G̃‖2
]

E

[

‖W̃Q̃G̃H‖
]

+ 2PE

[

‖G̃‖3
]

E [‖S‖] ,

where we used that Gi1 is independent of (W̃, G̃) and that G̃ has the same distribution as Gi1 .

By Lemma 13, we know that E
[

‖G̃‖ℓ
]

< ∞ for all integers ℓ. Therefore, to complete the proof, we have to show that

E

[

‖W̃Q̃G̃H‖
]

and E [‖S‖] are both bounded from above.

It holds that

E

[

‖W̃Q̃G̃H‖
]

= E

[∥

∥

∥

∥

∥

(

S+
√
α
i2−i1

G̃
)

Q̃G̃H

∥

∥

∥

∥

∥

]

= E

[∥

∥

∥

∥

∥

SQ̃G̃H +
√
α
i2−i1

G̃Q̃G̃H

∥

∥

∥

∥

∥

]

≤ E

[

‖SQ̃G̃H‖+√
α
i2−i1‖G̃Q̃G̃H‖

]

≤ ‖Q̃‖E
[

‖S‖‖G̃‖+ ‖G̃‖2
]

≤ PE

[

‖S‖‖G̃‖+ ‖G̃‖2
]

= P
(

E [‖S‖]E
[

‖G̃‖
]

+ E

[

‖G̃‖2
])

,

where we used that G̃ and S are independent in the last step, since G̃ and Wi1+1, . . .Wi2 are independent.
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Therefore, to complete the proof, it suffices to show that E [‖S‖] is bounded from above.

We have

E [‖S‖]

= E





∥

∥

∥

∥

∥

√
1− α

i2
∑

j=i1+1

√
α
i2−j

Wj

∥

∥

∥

∥

∥





≤ E





√
1− α

i2
∑

j=i1+1

√
α
i2−j‖Wj‖





=
√
1− α

i2
∑

j=i1+1

√
α
i2−j

E [‖Wj‖]

=
√
1− αE

[

‖G̃‖
]

i2
∑

j=i1+1

√
α
i2−j

=

√
1− α

1−√
α

(

1−√
α
i2−i1

)

E

[

‖G̃‖
]

≤
√
1− α

1−√
α
E

[

‖G̃‖
]

,

where we used that

i2
∑

j=i1+1

√
α
i2−j

=
√
α
i2

i2
∑

j=i1+1

(

1√
α

)j

=
√
α
i2

(

1√
α

)i1+1 1−
(

1√
α

)i2−i1

1− 1√
α

=

√
α
i2−i1 − 1√
α− 1

=
1−√

α
i2−i1

1−√
α

and that G̃ has the same distribution as each of the Wi. Therefore, E [‖S‖] is bounded from above. This proves that

E

[

Λ
(

Gi1 ,S, G̃,W̃
)]

≤ c for some c > 0.

Lemma 13. Let G ∈ CNR×NT a random matrix with i.i.d. entries such that

vec (G) ∼ NC (0NRNT
, INRNT

) .

Then for all integers ℓ ≥ 0, it holds that E
[

‖G‖ℓ
]

< ∞.

Proof. we will use the ǫ-net argument.

Definition 4. [21] Let (T, d) be a metric space. Let K ⊂ T. Let ǫ > 0. A subset N ⊆ K is called an ǫ-net of K if every point

in K is within distance ǫ of some point of N , i.e

∀x ∈ K ∃x0 ∈ N : d(x,x0) ≤ ǫ.

Definition 5. [21] The smallest possible cardinality of an ǫ-net of K is called the covering number of K and is denoted by

N (k, d, ǫ).

Let ǫ ∈ (0, 1
2 ). It holds that

‖G‖ ≤ ‖GR‖+ ‖GI‖,
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where GR = Re(G) ∈ RNR×NT and GI = Im(G) ∈ RNR×NT contain the real and imaginary parts of the matrix G,

respectively. Therefore, it follows that

‖G‖ℓ ≤ (‖GR‖+ ‖GI‖)ℓ

≤ 2ℓ−1
(

‖GR‖ℓ + ‖GI‖ℓ
)

,

where we used that for any integer ℓ, and for any positive real numbers a and b, we have (a+b)ℓ ≤ 2ℓ−1(aℓ+bℓ) (see Lemma

14 below). This yields

E
[

‖G‖ℓ
]

≤ 2ℓ−1
(

E
[

‖GR‖ℓ
]

+
[

‖GI‖ℓ
])

(35)

It has been shown in [21] that the covering number for the unit Euclidean sphere Sn−1 satisfies for ǫ > 0 the following:

N (Sn−1, ǫ) ≤
(

2

ǫ
+ 1

)n

. (36)

Furthermore, it has been shown in [21] that for any real matrix A ∈ Rm×n and any ǫ ∈ (0, 12 ), for any ǫ-net N of the

sphere Sn−1 and any ǫ-net M of the sphere Sm−1, it holds that

‖A‖ ≤ 1

1− 2ǫ
sup

x∈N ,y∈M
〈Ax,y〉.

Let Ñ be an ǫ-net of the sphere SNT−1 and let M̃ be an ǫ-net M̃ of the sphere SNR−1, both with the smallest possible

cardinality. It follows for ǫ ∈ (0, 1
2 ) that

‖GR‖ℓ ≤
(

1

1− 2ǫ

)ℓ
(

sup
t∈Ñ ,z∈M̃

〈GRt, z〉
)ℓ

and

‖GI‖ℓ ≤
(

1

1− 2ǫ

)ℓ
(

sup
t∈Ñ ,z∈M̃

〈GIt, z〉
)ℓ

.

Furthermore, it follows from (36) for ǫ ∈ (0, 1
2 ) that

|Ñ | ≤
(

2

ǫ
+ 1

)NT

= c1

and that

|M̃| ≤
(

2

ǫ
+ 1

)NR

= c2,

for some c1, c2 > 0. We have for ǫ ∈ (0, 1
2 )

E
[

‖GR‖ℓ
]

≤
(

1

1− 2ǫ

)ℓ

E





(

sup
t∈Ñ ,z∈M̃

〈GRt, z〉
)ℓ




≤
(

1

1− 2ǫ

)ℓ

E











∑

t∈Ñz∈M̃

NR
∑

j=1

NT
∑

i=1

(GR)jitizj





ℓ






≤ (c1c2)
ℓ

(1− 2ǫ)ℓ
E











NR
∑

j=1

NT
∑

i=1

(GR)ji





ℓ






< ∞,

where we used that SR =
(

∑NR

j=1

∑NT

i=1 (GR)ji

)

is the sum of independent and identically distributed Gaussian random

variables with mean 0 and variance 1
2 . Therefore SR is a Gaussian random variable with mean 0 and variance NRNT

2 .
Therefore the ℓth moment of SR is finite.
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Analogously, one can show that E
[

‖GI‖ℓ
]

< ∞.

Thus, we can conclude using (35) that E
[

‖G‖ℓ
]

< ∞.

Lemma 14. For any real numbers a, b and for any integer ℓ ≥ 0.

|a+ b|ℓ ≤ 2ℓ−1
(

|a|ℓ + |b|ℓ
)

.

Proof. The statement of the lemma is clear for ℓ = 0. Now for any integer ℓ ≥ 1, the function Ψ(x) = xℓ is convex for x ≥ 0,
since its second derivative is equal to ℓ(ℓ− 1)xℓ−2 ≥ 0.

Therefore, by using the convexity of Ψ, it follows that

∣

∣

∣

a+ b

2

∣

∣

∣

ℓ

≤
( |a|+ |b|

2

)ℓ

≤ |a|p + |b|ℓ
2

.

Lemma 15. For any 0 < α < 1, it holds that

n
∑

i=1

i−1
∑

k=1

αi−k ≤ n

1− α
.

Proof. We have

n
∑

i=1

i−1
∑

k=1

αi−k

=

n
∑

i=1

αi
i−1
∑

k=1

(

1

α

)k

=

n
∑

i=1

αi 1

α

1−
(

1
α

)i−1

1− 1
α

=

n
∑

i=1

αi 1−
(

1
α

)i−1

α− 1

=
n
∑

i=1

αi − α

α− 1

=

n
∑

i=1

α− αi

1− α

=
nα

1− α
−

n
∑

i=1

αi

1− α

≤ nα

1− α

≤ n

1− α
.

Lemma 16. For any 0 < α < 1 it holds that

n
∑

i=1

n
∑

k=i+1

αk−i ≤ n

1− α
.
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Proof. We have

n
∑

i=1

n
∑

k=i+1

αk−i

=

n
∑

i=1

(

1

α

)i n
∑

k=i+1

αk

=

n
∑

i=1

(

1

α

)i

αi+1

(

1− αn−i
)

1− α

=
n
∑

i=1

α
(

1− αn−i
)

1− α

=
nα

1− α
− αn+1

1− α

n
∑

i=1

(

1

α

)i

≤ nα

1− α

≤ n

1− α
.

Lemma 17. ∀i ∈ {1, . . . , n}

i(Ti;Zi,Gi)

= log det(INR
+

1

σ2
GiQ̃GH

i )− 1

ln(2)σ2
(Zi −GiTi)

H (Zi −GiTi) +
1

ln(2)σ2
ZH

i

(

INR
+

1

σ2
GiQ̃GH

i

)−1

Zi,

where Ti ∼ NC

(

0NT
, Q̃
)

, i = 1 . . . n.

Proof. Notice that

i(Ti;Zi,Gi) = log

(

pZi,Gi,Ti
(Zi,Gi,Ti)

pZi,Gi
(Zi,Gi) pTi

(Ti)

)

= log

(

pZi|Gi,Ti
(Zi|Gi,Ti)

pZi|Gi
(Zi|Gi)

)

,

where we used that Ti and Gi are independent.

It holds that

Zi|Gi,Ti ∼ NC

(

GiTi, σ
2INR

)

and that

Zi|Gi ∼ NC

(

0NR
,GiQ̃GH

i + σ2INR

)

.
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It follows that

log
pZi|Gi,Ti

(Zi|Gi,Ti)

pZi|Gi
(Zi|Gi)

= log









1
πNR det(σ2INR

)
exp

(

−1
σ2 (Zi −GiTi)

H
(Zi −GiTi)

)

1
πNR det(GiQ̃GH

i +σ2INR
)
exp

(

− 1
σ2Z

H
i

(

INR
+ 1

σ2GiQ̃GH
i

)−1

Zi

)









= log

[

det(GiQ̃GH
i + σ2INR

)

det(σ2INR
)

2

(

−1

ln(2)σ2 (Zi−GiTi)
H (Zi−GiTi)+

1
ln(2)σ2 ZH

i (INR
+ 1

σ2 GiQ̃GH
i )

−1
Zi

)

]

= log det(INR
+

1

σ2
GiQ̃GH

i )− 1

ln(2)σ2
(Zi −GiTi)

H
(Zi −GiTi) +

1

ln(2)σ2
ZH

i

(

INR
+

1

σ2
GiQ̃GH

i

)−1

Zi.

Lemma 18. For any random vector X = (X1, . . . , XN)T ∼ NC (0N ,O) with tr(O) ≤ ν, ν > 0, E
[

‖X‖4
]

is bounded from

above.

Proof. It holds that

‖X‖4 =

(

N
∑

ℓ=1

|Xℓ|2
)(

N
∑

ℓ=1

|Xℓ|2
)

=

N
∑

ℓ=1

N
∑

s=1,s6=ℓ

|Xℓ|2|Xs|2 +
N
∑

ℓ=1

|Xℓ|4.

This yields

E
[

‖X‖4
]

=

N
∑

ℓ=1

N
∑

s=1,s6=ℓ

E
[

|Xℓ|2|Xs|2
]

+

N
∑

ℓ=1

E
[

|Xℓ|4
]

≤
N
∑

ℓ=1

N
∑

s=1,s6=ℓ

√

E [|Xℓ|4]E [|Xs|4] +
N
∑

ℓ=1

E
[

|Xℓ|4
]

,

where we used Cauchy Schwarz’s inequality. Since tr(O) ≤ ν, it follows that for all ℓ = 1, . . . , N

Xℓ ∼ NC(0, vℓ),

where vℓ ≤ ν. Therefore, E
[

|Xℓ|4
]

, ℓ = 1 . . .N, is bounded from above and so is E
[

‖X‖4
]

.
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