
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2022, No. 3, pp. 438–462. DOI:10.46586/tches.v2022.i3.438-462

Beware of Insufficient Redundancy
An Experimental Evaluation of Code-based FI Countermeasures

Timo Bartkewitz∗1 , Sven Bettendorf∗1 , Thorben Moos∗2 ,
Amir Moradi∗3 and Falk Schellenberg∗4

1 TÜV Informationstechnik GmbH, Essen, Germany
t.bartkewitz@tuvit.de,s.bettendorf@tuvit.de

2 UCLouvain, ICTEAM, Crypto Group, Louvain-la-Neuve, Belgium
firstname.lastname@uclouvain.be

3 University of Cologne, Institute for Computer Science, Cologne, Germany
firstname.lastname@uni-koeln.de

4 Max Planck Institute for Security and Privacy, Bochum, Germany
firstname.lastname@mpi-sp.org

Abstract. Fault injection attacks pose a serious threat to cryptographic implemen-
tations. Countermeasures beyond sensors and shields usually deploy some form of
redundancy to detect or even correct errors. A few years ago, a novel design method-
ology called Impeccable Circuits has been introduced on how to correctly integrate
Concurrent Error Detection (CED) schemes, based on Error-Detection Codes (EDCs),
into cryptographic hardware circuits. The underlying adversary model limits attackers
to inject at most t single-bit faults. By additionally considering the propagation
of faults in combinational circuits, the countermeasure guarantees detection of any
faulty computation caused by up to t single-bit faults.
In this work, we present an experimental analysis of the Impeccable Circuits coun-
termeasure and its underlying assumptions in modern semiconductor technology.
More precisely, we have taken hardware implementations of the lightweight block
cipher SKINNY equipped with various forms of the EDC-based CED schemes and
realized them as cryptographic co-processors on a 40 nm ASIC to experimentally
evaluate their resistance to Laser Fault Injection (LFI) attacks. In short, our results
show that it is fairly simple to overcome the protection offered by the integrated
countermeasures when the length of the code n is smaller than twice its rank k
(i.e., no full redundancy). This is not caused by any flaw in the underlying design
methodology or concept, but merely demonstrates how easily the defined adversary
model can be overcome. In our case, a standard black-box scan over the target using
a common single-shot LFI setup is sufficient to occasionally inject more single-bit
faults than those bounded by the underlying adversary model when n < 2k. The
probability of such events proved to be large enough to perform successful key-recovery
attacks via Differential Fault Analysis (DFA) in a matter of hours. Thus, we caution
against limiting the redundancy in code-based FI countermeasures to less than the
number of bits per word, especially in nanometer technologies, and point out that
less-complex countermeasures like duplication showed a higher level of resistance in
our experiments at a lower cost.

Keywords: Concurrent Error Detection, Code-based Countermeasures, Impeccable
Circuits, Laser Fault Injection, ASIC, Hardware Implementation

∗Authors list in alphabetical order; see https://www.ams.org/profession/leaders/culture/
CultureStatement04.pdf

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-01-15 Accepted: 2022-03-15 Published: 2022-06-08

https://doi.org/10.46586/tches.v2022.i3.438-462
https://orcid.org/0000-0002-3133-0382
https://orcid.org/0000-0001-9939-2494
https://orcid.org/0000-0003-3809-9803
https://orcid.org/0000-0002-4032-7433
https://orcid.org/0000-0001-8353-7564
mailto:t.bartkewitz@tuvit.de,s.bettendorf@tuvit.de
mailto:thorben.moos@uclouvain.be
mailto:amir.moradi@uni-koeln.de
mailto:falk.schellenberg@mpi-sp.org
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
http://creativecommons.org/licenses/by/4.0/

T. Bartkewitz, S. Bettendorf, T. Moos, A. Moradi and F. Schellenberg 439

1 Introduction
Implementations of cryptographic building blocks should not only resist mathematical
cryptanalysis and be efficient from a resource consumption point of view, oftentimes they
also need to provide protection against physical adversaries. Yet, virtually all cryptographic
functions are not resistant to physical attacks when implemented in a straightforward
manner. Hence, they have to be equipped with dedicated countermeasures to provide
security against adversaries who can physically access the target implementation. This
attack vector is particularly relevant for devices in the Internet of Things (IoT), which are
given into the hands of users. Depending on the underlying security application, the user
himself, and essentially anybody with physical access to the device, needs to be considered
as a potentially malicious actor.

Physical attacks typically come in two different flavors. Passive and non-invasive
physical attacks, often referred to as Side-Channel Analysis (SCA) attacks, require an
adversary to carefully observe the physical properties or emissions of the device under attack
in order to gain information about its internal state. Often, the device’s timing [Koc96],
power consumption [KJJ99] or electromagnetic emanation [GMO01] can reveal crucial
information leading to key-recovery procedures. Development of countermeasures against
such information leakages has become an important field of research ever since the first
successful SCA attacks have been reported in public literature [Koc96, KJJ99]. Fault-
Injection Attacks (FIAs), introduced in [BDL97], constitute the first attack vector belonging
to the class of active physical attacks. The underlying idea is based on injecting faults
during the computation of a cryptographic implementation and subsequently learning
information about its intermediate values by analyzing the faulty outputs. This is often
achieved through a comparison to fault-free outputs, as it is common practice in Differential
Fault Analysis (DFA) attacks [BS97]. Initially proposed as a powerful attack against public
key cryptosystems such as RSA [BDL97], fault attacks have quickly been extended to secret
key algorithms such as block ciphers [BS97]. DFA attacks on block ciphers are similar
to a differential cryptanalysis [BS90] of their last rounds. It has been shown that similar
to SCA attacks, DFAs can be mounted on virtually any cryptographic implementation
if no dedicated countermeasures have been integrated. Conducting such attacks on an
implementation of a block cipher for example requires merely some engineering effort.
Typical methods to inject faults into a computing device include focusing a laser beam on
the semiconductor surface of the circuit [SA02, vWWM11, SFR+15, SFG+16, DBC+18,
RBMM19, CCD+21], or transiently changing its supply voltage or the clock source, known
as power glitch [KK99, ABF+02, KSV13, KJP14] and clock glitch [KK99, PV04, BGV11,
ESH+11, KSV13]. Alternatively, faults can also be injected by means of electromagnetic
pulses [QS02, DDR+12, DDRT12, OGM17, MDH+13, CH17].

Different countermeasures have been developed to prevent FIAs. Beyond sensors and
shields which may be used to sense and prevent physical manipulation of the devices, many
FI countermeasures aim at detecting (or correcting) faults on an algorithmic basis during
the sensitive computations. Such a detection (resp. correction) of faults typically requires
some form of redundancy. This can be realized by repeating the computation multiple times
in a row (time redundancy), by instantiating the circuit multiple times (area redundancy),
by applying an Error-Detection Code (EDC) or Error-Correction Code (ECC) (information
redundancy), or by any combination of these options. Traditionally, whenever a fault is
detected, the output is suppressed, so that the adversary cannot learn information from the
faulty output. In this case, a classic DFA becomes impossible. However, other sophisticated
FIAs like Statistical Ineffective Fault Attacks (SIFAs) [DEK+18] are able to overcome
fault-injection countermeasures that are based on the detect-and-suppress principle. A
SIFA adversary does not require any access to faulty outputs. Instead, correct outputs
stemming from faulted computations indicate that the induced fault was ineffective, which
can be exploited by SIFA adversaries to recover the secrets. Therefore, simply withholding

440 Beware of Insufficient Redundancy

faulty outputs from the adversary is insufficient to provide protection against advanced
fault attacks like SIFA. Fault correction techniques, however, have the potential to protect
against this kind of attack as well.

When developing a countermeasure against physical attacks (including both SCA and
FIA) it is required to clearly define the adversary model. Without limiting the adversary,
no proof for the security of an implementation can be given. In particular, it is not
possible to craft an implementation of any cryptographic primitive, that remains secure in
presence of an unlimited adversary. In masking schemes, for example, when used as an SCA
countermeasure, the maximum order of the attack needs to be defined, which is abstracted
as the maximum number of probes the adversary is allowed to simultaneously place on
the circuit (i.e., the concept behind the probing security model [ISW03]). Exceeding this
threshold could easily result in overcoming the protection as the adversary does not fit into
the defined model anymore. In fault injection countermeasures, an adversary’s capabilities
are often modeled by defining the maximum number of state bits, or circuit wires, that
can be faulted simultaneously, i.e., in one clock cycle [IPSW06]. If a countermeasure is
capable of detecting (or correcting) all faults caused by up to n faulted bits or wires, but
the adversary somehow succeeds in faulting ≥ n + 1 bits or wires, the faulty computation
may remain undetected (or uncorrected). In this scenario, despite a countermeasure being
present and active, the attacker can obtain faulty ciphertexts and gain information about
the secret key. It has been shown in [BHJ+17] for example, how a parity-based detection
scheme can be circumvented by faulting more than 1 bit simultaneously. Additionally,
it has been demonstrated that even a single faulty output can be sufficient to guess the
secret key with non-negligible probability [TMA11]. Thus, it is crucial to make realistic
assumptions about the capabilities of potential adversaries in order to properly adjust
the security level. In this regard, the defined adversary model is the primary factor in
determining the security and efficiency of the resulting implementation. On the one hand,
there is always the risk of underestimating the attackers capabilities which might lead to a
vulnerable implementation. On the other hand, being over-protective leads to very costly
resource overheads. The goal of such decision making is usually to increase the effort for
an adversary to such an extent that the assets which are protected may not be worth the
amount of time and resources that have to be invested to perform a successful attack.

The Impeccable Circuits countermeasure defines an adversary model by the maximum
number of single-bit faults (and their associated clock cycles) that are allowed to be
injected into the underlying implementation [AMR+20]. Following this concept, the
authors have introduced a design methodology to guarantee the detection of faults injected
into any location of the circuit as long as the considered adversary model holds. Such
statements are supported by proofs borrowing knowledge from coding theory, as the
countermeasure is a Concurrent Error Detection (CED) scheme based on EDCs. To the
best of our knowledge, this countermeasure is the first that provides guidelines for the
correct implementation of code-based CED schemes in hardware circuits in presence of
fault propagation. Fault propagation is a detrimental effect that may result in degradation
of the error-detection capability that can be achieved with a certain code. Thus, we
have chosen this countermeasure as the first one presented in literature that actually
guarantees the detection of any fault in a hardware circuit that is covered by the underlying
EDC [AMR+20]. This is an important feature for our analysis as we can be certain that
any undetected fault is indeed caused by exceeding the capabilities defined by the adversary
model and not by unforeseen fault propagation or similar commonly observed behavior of
hardware circuits.

As described in [AMR+20], the main goal of the Impeccable Circuits authors was to
protect against DFA attacks. The application of the proposed technique in a detect-
and-suppress manner does not lead to implementations secure against SIFA. However,
the scheme has been extended in follow-up works by employing ECCs to guarantee

T. Bartkewitz, S. Bettendorf, T. Moos, A. Moradi and F. Schellenberg 441

the correction of up to a certain number of single-bit faults [SRM20] and to a hybrid
construction allowing the correction as well as detection of faults [RSM21]. Both follow-up
works, known as Impeccable Circuits II and Impeccable Circuits III, consider a similar
adversary model and provide proofs for their claims. These extended versions have the
potential to protect against SIFA as well as DFA attacks.

1.1 Our Contributions
The contributions of this work are primarily of experimental nature. As stated before,
code-based FI countermeasures, like Impeccable Circuits, are based on the definition of
an adversary model, where theoretical assumptions about the emergence, type, volume
and propagation of faults in hardware circuits have to be made. Whenever the theoretical
considerations are sound and the countermeasures are implemented correctly, all faults
fitting into the underlying model should be detected (resp. corrected). However, it is very
rarely investigated whether such theoretical assumptions hold in practice, and how difficult
it is to induce faults which fall outside the theoretical model and therefore go undetected
(resp. uncorrected).

In this work, we try to answer these questions based on experimental investigations
conducted by means of Laser Fault Injection (LFI) attacks performed on real hardware.
To this end, we have fabricated a 40 nm CMOS ASIC realizing multiple implementations
of the SKINNY lightweight block cipher [BJK+16] equipped with fault-detection facilities
following the design methodology of Impeccable Circuits [AMR+20]. For the implementa-
tions, we have considered different adversary models corresponding to different values t as
the maximum number of single-bit fault injections covered. For the sake of comparison,
we additionally implemented an unprotected SKINNY core as well as a variant where the
traditional duplication technique is applied, i.e., instantiating the core twice and comparing
the results.

In summary, without any target-specific fine-tuning, our LFI setup is able to induce
undetected faults into all cores protected by code-based schemes where the length of the
code n is smaller than two times the rank of the code k (i.e., less than full information
redundancy). This is neither the case for the cores with n ≥ 2k nor for the duplication,
which all realize full information redundancy. Since all particularly (area-)efficient variants
of the countermeasure (n < 2k) proved to be vulnerable, it is indeed the simple duplica-
tion that offers the best trade-off between the area cost and the protection level in our
experiments (with a single-shot laser). Our results demonstrate that albeit the high design
complexity of Impeccable Circuits, its variants with insufficient redundancy are easy to
bypass in practice using straightforward LFI.

One assumption often made for code-based FI countermeasures and their instantiation
in hardware is that injecting more single-bit faults simultaneously into a state word is
also more difficult and therefore somehow related to a stronger adversary model. Our
results show that this is not necessarily the case. Clearly, in advanced nanometer-scaled
CMOS technologies the spot size of even high-precision lasers is often significantly larger
than a single logic gate and therefore may affect multiple cells in the same area at
once [SFG+16, DBC+18]. Depending on the exact position and energy level of the laser
shot, it is thus easily possible to fault multiple gates at the same time. Hence, it is mostly
a matter of chance how many gate are faulted in the affected region, which also depends on
the data values currently being processed. In conclusion, keeping the redundancy in code-
based FI countermeasures small for efficiency reasons can be a dangerous approach as it is
not necessarily a hard task, or requires particularly strong adversaries, to inject multiple
faults at once into the same region. This is especially true in advanced semiconductor
technologies and for gates in close proximity to each other. In this regard, based on our
experimental results, we recommend to use codes with at least full information redundancy
(n ≥ 2k) that are able to cover any number of single-bit faults injected into a state word

442 Beware of Insufficient Redundancy

in either the original algorithm or the predictor.
Please note that all cores implemented on our ASIC prototype are protected by detection-

based countermeasures. Thus, in this particular setting they cannot offer protection against
SIFA, which we also demonstrate experimentally on one of our implemented SKINNY
cores. However, as our experimental investigations mainly aim at evaluating the soundness
of adversary models in practice, our results are transferable to other protection schemes
covering SIFA, where similar adversary models are applied. Examples include recently
published schemes based on fault-correction facilities [SRM20, BKHL20, RSM21] and those
which combine SCA and fault-detection countermeasures [DDE+20, SBD+20]. We believe
that our work provides valuable insights for the community as practical experiments of
this kind (taping out a test chip, performing practical experiments with a professional LFI
setup) require significant effort and resources, and at the same time are vital to verify the
soundness of assumptions and hypotheses that are used to argue about the security of
implementations.

2 Background
Generally, the objective of fault-injection attacks is to intentionally introduce malicious
failure into a circuit leading to abnormal operation. This can be either changing the flow of
a program running on a micro-processor, flipping some bits in the dynamic/static memory,
changing the values stored in flip-flops, or manipulating the computation of combinational
circuits made from logic gates. The resulting faulty outputs (or in some cases the
information regarding detection of faults) may give the attacker an opportunity to reveal
the secrets. Such faults can be injected by different means including temperature [BDL97,
Sko02, KSV13, KJP14], clock glitch [KK99, PV04, BGV11, ESH+11, KSV13], power spikes
also called power glitch [KK99, ABF+02, KSV13, KJP14], electromagnetic pulse [QS02,
PV04, SH07, DDR+12, DDRT12, MDH+13, OGM17, CH17] and optical facilities such
as focused ion beam [HNT+13], and laser beam [SA02, vWWM11, SFR+15, SFG+16,
DBC+18, RBMM19, CCD+21].

In this work, we deal with LFI, which is known as one of the strongest and the most
precise fault-injection mechanisms. LFI allows the adversary to target a particular part
of the circuit, whereas most of the other fault-injection methods cannot achieve such a
precision. Since CMOS transistors are generally susceptible to light, depending on the
laser spot size and the underlying feature size of the device under attack, the LFI may
affect individual gates ranging from one to multiple cells. If the laser beam is very narrow
and/or the device has been fabricated by a comparably large technology node, it is even
possible to target only one transistor [SA02].

It indeed has become part of general knowledge that security-relevant devices, which
may fall into the hands of potential adversaries, should be equipped with dedicated coun-
termeasures. Obviously, one category is protection mechanisms to harden cryptographic
circuits against fault-injection attacks. In the following, we shortly review the basics
of fault protection mechanisms with a special focus on CED schemes, particularly the
preliminaries of Impeccable Circuits [AMR+20].

2.1 Countermeasures
Essentially, two different directions have been explored so far. The first category in-
cludes physical techniques developed to prevent or detect the injection of a fault. Metal
shields [HPS99] are known as a common technique to protect light-sensitive components
of the circuits from laser beams. Other schemes use sensors to detect any unusual physical
influence on the chip surface (e.g., temperature, voltage, magnetism, or light) thereby
halting the circuit to prevent any erroneous computations [MTN+20]. At the positive side,

T. Bartkewitz, S. Bettendorf, T. Moos, A. Moradi and F. Schellenberg 443

Input

predictor
A'

original

check

Output

A

Figure 1: Overview of CED by means of a predictor A′.

these schemes are generic and independent of the underlying circuit, its functionality and
its design architecture. They, however, usually lead to a high cost, may still be removed
or deactivated by skilled adversaries and only protect against a particular type of fault
injection. Thus, it is often possible to circumvent them by means of another fault-injection
method not covered by the integrated countermeasure [SA02].

The second category of countermeasures is designed to be implemented at the algorithm
level. Their aim is to detect or correct any fault on the fly during the operation of the circuit.
Therefore, these mechanisms are called Concurrent Error Detection (CED) schemes. Several
CED approaches have been introduced and analyzed in the literature to protect against
fault-injection attacks [KWMK02, WKKG04, YW06, SSHA08, KR10, KR11, WJJ+15,
GMJK15, BHJ+17, AMR+20, BHL21]. Figure 1 illustrates the basic idea. In addition to
the original circuit A, a predictor module A′ is built. A and A′ may operate in parallel
which necessitates their individual instantiations. The predictor A′ can be an exact copy
of A, which allows reuse of A multiple times. Alternatively, more complex algorithms such
as parity or error detecting/correcting codes can be used to realize A′. At the end of such
computations, the original and the predicted results are compared in order to examine
whether the computation was faulty. Generally speaking, suppose that the input of the
circuit is denoted by x and its output by y = A(x). The predictor A′ realizes a function
which can be written as S ◦ A, where S is called the signature generator function. Hence,
the check module identified in Figure 1 examines the consistency of the predicted signature
y′ = A′(x) with the actual signature computed as y′′ = S(y). When a fault is detected
through this check, depending on the countermeasure, either the fault is corrected, the
circuit is halted, or a constant/random output is generated.

2.1.1 Duplication

One of the easiest ways to realize the predictor A′ is to copy A. Naturally, the signature
generator function becomes the identity, i.e., ∀ Y, G(Y) = Y . If A and A′ should run
in parallel, the area overhead is approximately a factor of two, plus the additional logic
required to implement the check module.

Using this structure, any fault injected into only one of A and A′ is detected. One
possible way to bypass the check is to inject identical faults into A and A′. While this might
not be trivial in practice, it has been shown in [SHS16] that – having a priori knowledge
about the exact location of corresponding cells in A and A′ – identical faults can be injected
by means of two laser beams, hence passing through the check module. We discuss about
this possibility in Section 5 and argue that such an attack becomes increasingly unlikely
to succeed on ASIC implementations in advanced semiconductor technologies, especially
when the designer does not strictly enforce that A and A′ are realized by exactly the same
netlist. Alternatively, one laser beam can target A, and another one may try to circumvent
the check process.

In general, A′ can include multiple copies of A, which enable correction of some faults,
e.g., via majority voting. Naturally, multiple redundant computations increase the security
at the cost of a higher area overhead. Alternatively, one can operate A multiple times and

444 Beware of Insufficient Redundancy

compare the result of successive computations. This minimizes the area overhead, but
increases the latency accordingly, and may not be effective in presence of permanent faults.

2.1.2 Error-Detection Codes (EDCs)

In addition to duplication, EDCs as an essential technique from information theory, are
suggested to be used to detect malicious faults. In the following, the necessary notions
related to these codes are reviewed.

Definition 1 (Binary Code). A binary [n, k]-code C with n > k, is a bijective mapping
from the space of messages X = Fk

2 to the space of codewords C ⊂ Fn
2 , i.e., each message

x ∈ X is mapped to a unique codeword c ∈ C with c = C(x). The parameters n and k are
referred to as the length and rank of the [n, k]-code C, respectively. Besides, signature size
refers to the difference between length and rank, i.e., n−k, also called parity size.

Definition 2 (Systematic Code). A code in which the message x is embedded in the
codeword c is called a systematic code, i.e., the codeword c is the concatenation of x
with a signature (redundancy) x′, i.e., c = 〈x‖x′〉, while the signature bits are generated
from x. Systematic codes enable a simple split of the data paths between message and
signature. Therefore, the original implementation of the target operation can stay as it is.
Furthermore, the decoder can take the first k bits of a codeword to extract the message,
i.e., no implementation cost.

Definition 3 (Linear Code). The [n, k]-code for which the codeword space is a vector
subspace over Fn

2 is called linear. In other words, any linear combination of codewords
is also a valid codeword, i.e., ∀ c1 = 〈x1||x′1〉, c2 = 〈x2||x′2〉 ∈ C with c1 = C(x1) and c2 =
C(x2), c3 = c1 ⊕ c2 = 〈x3||x′3〉 such that c3 = C(x3) ∈ C.

Most of the works in the domain of protection against fault-injection attacks focused on
systematic linear codes. This does not lead to any restrictions, as any linear non-systematic
code can be transformed into a systematic linear code with the same properties, i.e., with
the same rank and the same minimum distance given in Definition 5. For more information
about the transformation procedure, we refer the interested reader to [MS77].

Definition 4 (Generator Matrices). For a linear [n, k]-code, the k×n matrix G that maps
a message to the corresponding codeword, is called the generator matrix, i.e., C(x) = x ·G.
Since the rank of the generator matrix is k, there are n−k linear equations between the
codeword bits to be satisfied. These equations can be shown as a matrix multiplication.
The n× (n−k) matrix H that checks if an element of Fn

2 is a possible codeword is called
the signature check matrix1.

The generator matrix G of a linear systematic [n, k]-code is of the form G = [Ik|P] with
Ik the identity matrix of size k, while the signature is generated by a k × (n−k) matrix P
as x′ = S(x) = x · P with S being called the signature generator function, as defined in
Section 2.1 as well.

Definition 5 (Minimum Distance). The minimum distance d of an [n, k]-code C is defined
as d = min∀c1 6=c2∈C hw(c1 ⊕ c2), where hw denotes the Hamming weight. An [n, k]-code
with minimum distance d is denoted as an [n, k, d]-code.

As an advantage, a code C with the minimum distance d can detect additive faults
e ∈ Fn

2 , if hw(e) < d, i.e., if the faulty codeword c̃ is written as c⊕ e. To this end, let us
write c̃ = 〈x̃‖x̃′〉. If the result of x̃′ ⊕ (x̃ · P) = x̃′ ⊕ S(x̃) is not zero, the codeword c̃ /∈ C,
hence the fault is detected. This is the exact operation of the check module in Figure 1.

1In some literature, it is also called parity check matrix.

T. Bartkewitz, S. Bettendorf, T. Moos, A. Moradi and F. Schellenberg 445

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Figure 2: SKINNY cipher, operations of an encryption round [BJK+16].

3 Target
Based on the principles given in Section 2.1.2, the authors of [AMR+20] have introduced a
design methodology to integrate an EDC into the hardware implementation of cryptographic
algorithms. They have provided suggestions on how to design different modules, how
to apply the scheme on the data path as well as on the control logic, and how to check
the consistency of signatures. Additionally, they have defined two adversary models: (1)
univariateMt where the adversary is able to inject t single-bit faults during the entire
operation of the cipher, e.g., a full encryption, and (2) multivariateM∗t which extends
the univariate model assuming that t single-bit faults are allowed to be injected per clock
cycle. Please note that injecting t single-bit faults means that an adversary can make up
to t individual cell-outputs, or synonymously wires, in the circuit faulty. In accordance
with [AMR+20] we denote this as t single-bit (or single-cell or single-wire) faults instead of
summarizing them as one t-bit fault (as often done in less hardware-oriented fault injection
literature). In that regard, each independent cell whose output is faulted is considered as
a separate entity which clearly makes sense for fine-grained hardware implementations.
Based on the defined adversary models, the authors have applied their proposed technique
on various ciphers and made the implementations available online2. We particularly focus
on their SKINNY implementations, although the result of our analyses and findings are
not limited to these particular implementations. Therefore, in the following, we start with
a short explanation on the cipher and then focus on various implementations created by
the original authors of [AMR+20].

3.1 SKINNY
The SKINNY cipher family introduced in [BJK+16] supports different block sizes as well
as key sizes. We focus on a certain variant, namely a block size and key size of 64 bits.
As shown in Figure 2, the cipher state is seen as a 4 × 4 matrix of 4-bit nibbles, while
SubCells (SC) refers to the application of a 4-bit bijective S-Box on each cell individually,
AddConstants (AC) describes an XOR with round constants, AddRoundTweakey (ART)
describes an XOR with the round keys (done on only two rows), ShiftRows (SR) rotates
the rows similar to the AES decryption, and MixColumns (MC) describes a linear layer
mixing the columns according to the circuit shown in Figure 2. In the SKINNY-64-64
variant, which requires 32 rounds to accomplish secure encryption/decryption, the key
schedule is merely the application of a bit-permutation P on the 64-bit key state.

The authors of [AMR+20] have proposed three different [n, k, d]-codes ([5,4,2], [7,4,3],
and [8,4,4]) for this block cipher. Every nibble of the cipher state is encoded by one of these
codes providing 1, 3, or 4 bits of redundancy (signatures). Therefore, the implementations
are referred to as RED 1, RED 3, and RED 4, respectively. These also translate to minimum
distances 2, 3, or 4 respectively, implying that the implementations should detect any 1,
2, or 3 single-bit faults.3 Regarding faults injected entirely into only one of the circuits

2https://github.com/emsec/ImpeccableCircuits
3A RED 2 implementation is also provided by the authors with 2 bits of redundancy, but it is based on a

[6,4,2]-code, i.e., with the minimum distance of 2 similar to RED 1. Hence, we excluded this variant.

https://github.com/emsec/ImpeccableCircuits

446 Beware of Insufficient Redundancy

′

64

64

r r

rst rst rst rst

State

S◦

′

′ ′

RK State′ RK′

c

Plaintext Key

Ciphertext ccc

S

′ ′

SC

SR

MC

SC

SR

MC

AC AC
ART ART ′

P P

(a) RED 1 and RED 3 with r = 16 and r = 48, respectively

64

64

64 64

rst rst rst rst

State

′

RK State′ RK′

Plaintext Key

Ciphertext c c c c

S

′ ′

′

′

SC

SR

MC
SR

MC

SC
′

′

AC AC
ART ART ′

P P

(b) RED 4

Figure 3: Block diagram of the round-based SKINNY-64-64 encryption RED 1, RED 3, and
RED 4 implementations. The left part of each design depicts the original encryption function,
and the right part the predictor circuit, corresponding to A and A′ given in Figure 1.

A or A′, the RED 4 variant is able to detect any fault in a nibble. The authors created
two distinct design architectures based on the size of the signature. When the signature
size n < 2k (i.e., RED 1 and RED 3), the design architecture shown in Figure 3(a) is used.
Otherwise, when the signature size is at least as large as the message size (i.e., n ≥ 2k
in RED 4), the implementation follows the architecture shown in Figure 3(b). The main
difference between these two architectures is that in case of RED 4 the predictor circuit
operates solely on the signature while in case of RED 1 and RED 3 the state of the cipher
(denoted by ‘State’) is additionally required. This part is highlighted by a red connection
in Figure 3(a). Below we give more details about each implementation.

3.1.1 RED 1

As given above, a [5,4,2]-code has been applied for this implementation, which is known as
the parity code, i.e., the signature is the XOR result of all 4 bits of every nibble. Therefore,
the size of the signature for the entire cipher state – as given in Figure 3(a) – is r = 16 bits.
The signature generator function S : F4

2 → F2 and S ◦ SC, which generates the predicted

T. Bartkewitz, S. Bettendorf, T. Moos, A. Moradi and F. Schellenberg 447

signature at the S-Box output are given as follows.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S (x) 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
S ◦ SC (x) 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0

The remaining round operations can independently be applied on signatures. More
precisely, only one (red) connection from the original circuit A to the predictor circuit A′ is
required. In short, the XOR with the round constant (AC′) and with the round key (ART′)
can be performed on the signatures, since these operations and the signature generator
function of the applied [5,4,2]-code are binary linear. The same holds for SR′, MC′, and the
permutation layer of the key schedule P′.

The authors have provided proofs indicating that it is sufficient to examine the consis-
tency of signatures only once per cipher round, as long as the independence property is
fulfilled. This means that no gate in the combinational circuit should be shared between
the sub-circuits which realize different coordinate functions of the cipher round. This
avoids a single fault to be propagated to more than one output bit of a cipher round.
Therefore, the places identified by c in Figure 3(a) are concatenated, and the actual
signatures are computed through application of S. The check is finally done by comparing
the actual signatures with the predicted ones, i.e., concatenation of places identified by c ′.
This check is done following a certain procedure, which we do not show here for the sake
of brevity. In short, it avoids the ciphertext to be generated if a single bit fault is detected.
Note that the same is done on the control logic made by a 6-bit Linear Feedback Shift
Register (LFSR) which generates the round constants as well. This design is expected to
be secure in presence of a univariate attack with a single bit fault per encryption, i.e., the
M1 adversary model.

3.1.2 RED 3

Enlarging the distance of the applied code, i.e., a [7,4,3]-code leads to an increase in
the number of faults that the design is supposed to detect as well as in the size of the
signatures, i.e., 3 bits per state nibble. The design architecture of RED 3 is similar to that
of RED 1 with the following signature generation and prediction functions (for the S-Box).

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S (x) 0 3 7 4 5 6 2 1 6 5 1 2 3 0 4 7
S ◦ SC (x) 3 2 5 0 3 1 7 2 4 6 6 0 5 4 1 7

The rest of the operations are similar to what we have explained for RED 1 in Section 3.1.1.
Merely the signature size changed from 1 bit to 3 bits, i.e., 48-bit of redundancy for the
whole cipher state. Consequently, this implementation is claimed to be secure underM2
adversary model, i.e., at most 2 single-bit faults per encryption.

3.1.3 RED 4

Here, since the underlying code is the extended Hamming code [8,4,4], the signature has
the same size as the original data, i.e., both have 4 bits. Further, since the signature
generator function S is bijective, the predictor SC′ can be realized without any connection
from the original cipher state. In more detail, the design architecture shown in Figure 3(b)
can be used which requires only initial generation of the signatures on plaintext and key.
Therefore, SC′ should first apply the inverse of S, before generating the predicted signature,
i.e., SC′ = S ◦ SC ◦ S−1 as given below.

448 Beware of Insufficient Redundancy

Table 1: Post-layout implementation details of the different SKINNY variants.
SKINNY core Area [GE] Crit. Path [ns] Power [µW]
unprotected 2670.00 3.95 154.75
duplication 4997.25 4.82 279.26
RED 1 4130.00 4.30 206.15
RED 1 multivariate 4405.75 6.73 213.63
RED 3 5738.75 4.32 290.38
RED 3 multivariate 6849.75 6.99 315.94
RED 4 6878.75 4.52 334.37
RED 4 multivariate 8305.75 7.95 366.92

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S (x) 0 e d 3 b 5 6 8 7 9 a 4 c 2 1 f
S ◦ SC ◦ S−1 (x) c 8 1 0 2 a d 3 4 7 5 e b 9 6 f

The other operations on the signatures are almost identical to the original cipher op-
erations since the size of the signature is the same as that of the original. SR′ is identical
to SR; the same holds for MC′ and P′. This implementation is supposed to detect any 3
single-bit faults in an encryption process, i.e., security against anM3 adversary. It can
additionally detect any fault of any size injected at only the original part of the circuit,
i.e., A.

3.1.4 Multivariate

All above-explained implementations cover only univariate adversary models. The authors
of [AMR+20] have explained how to turn a univariate-secure circuit to a multivariate-secure
one by (1) placing additional check points at the input of every register and (2) adjusting
the consistency check module. Therefore, all three above given implementations have a
multivariate variant, which is supposed to detect any t ∈ {1, 2, 3} single-bit faults at every
clock cycle, i.e., security againstMt adversary.

3.2 ASIC Prototype
The target for our experimental analysis is an Application-Specific Integrated Circuit (ASIC)
manufactured in a 40 nm low power CMOS technology. The chip is 1920 µm × 1920 µm
large and contains routing on 8 metal layers. Its layout and a microscope photography of
the bonded die are shown in Figure 4. For operation, the chip requires a core voltage of
1.1 V and an IO voltage of 2.5 V. The dies are packaged in a JLCC (J-Leaded Chip Carrier)
ceramic package with 44 pins. To prepare the sample chips for our LFI experiments we
have opened the packages from the backside using an X-Prep precision milling system and
polished the dies to flatten the substrate surface. This process is shown in Figure 5. The
ASIC has been developed for implementation-security evaluations in practice and contains
more than two dozen different cipher cores.

All aforementioned countermeasures together with an unprotected core have been
implemented on the 40 nm ASIC. We have taken the source code for the hardware
implementations created by the original Impeccable Circuits authors which are provided
on GitHub2 and realized them as separate clock-gated instances on the chip. Table 1
summarizes the post-layout implementation details for all different SKINNY variants that
are targeted in our experiments. It can be observed that the RED 1 countermeasure requires
the smallest overhead in all three categories, area, critical path delay and average power
consumption (at 100MHz). The RED 3 and RED 4 variants are costlier than the duplication,
especially their multivariate versions.

T. Bartkewitz, S. Bettendorf, T. Moos, A. Moradi and F. Schellenberg 449

(a) ASIC Layout (b) ASIC Photo

Figure 4: Custom 40 nm ASIC prototype which implements the different SKINNY cores
that are targeted in this work.

Figure 5: Preparation of an ASIC sample for the LFI experiments using an X-Prep
precision milling system.

4 Experimental Results
In this section we present our practical Laser Fault Injection experiments targeting the
SKINNY cores listed in Table 1. It is crucial to mention that we deliberately did not
use our precise knowledge about the position of individual gates or circuits parts in the
experiments, but tried to perform the attacks in a black-box setting. We have taken the
usual steps an adversary would have to perform without any knowledge about the details
of the implementation, from scanning the whole chip to find sensitive areas to targeting
the discovered regions with more precision. Using this approach we make sure that our
experiments can be performed by any adversary in possession of the device and an LFI
setup, without having access to all design details.

450 Beware of Insufficient Redundancy

Figure 6: This figure shows the Laser setup used in our experiments. The packaged,
opened and polished ASIC is mounted on a custom PCB and the chip surface is targeted
with the Nd:YAG Laser to inject faults.

4.1 Setup
The deployed LFI setup is of laboratory grade using a Neodymium-doped Yttrium Alu-
minum Garnet (Nd:YAG) medium. The optic is capable of laser spot sizes down to 1 µm
for a wavelength of 1064 nm while infrared backlight illumination enables identification
of metallic structures through silicon for precise spot positioning. The energy is applied
in shape of rectangular pulses having a duration of 5 ns at a level of a few up to several
hundred nanojoule (nJ). Figure 6 shows a photo of the setup. The ASIC provides accurate
signal edges indicating the start of the encryption process, which we used to trigger the
laser.

4.2 Energy
We begin by analyzing the unprotected round-based SKINNY in order to determine the
optimal energy level to inject faults on this device using two different spot sizes, 28 µm and
5.6 µm. We focus on the sensitive core area identified through an initial coarse full-chip
scan (detailed below) and investigate the ratio between correct and faulty responses in
function of the respective energy level. Our results for the larger spot, illustrated in
Figure 7, show that the number of faulty responses increases steadily up to 23 nJ and then
stagnates. Around this value we performed another test using smaller steps to find the
optimal level, as seen on the right side of Figure 7. Based on these results we decided to use
an energy strength of 22.5 nJ for further experiments with the large spot size (28 µm). To
determine the optimal energy levels for the smaller spot size we repeated the corresponding
investigation. In this case, the results indicated that less energy is required to most reliably
inject faults, namely a value around 16 nJ. All energy levels are averaged over time because
the laser is not capable of keeping the energy output exactly constant. However, small
deviations are normal for current laser systems. A comparison between the two laser spot
sizes clearly shows that the smaller spot is more likely to cause single-bit flips (although
it also produces many multi-bit faults) while the large spot produces mostly faults with
multiple bit errors.

T. Bartkewitz, S. Bettendorf, T. Moos, A. Moradi and F. Schellenberg 451

16.412.8

100

050

150

200

18.2 22 25.6
Energy [nJ]

Count

22.522

100

150

200

23.3

Correct
Wrong

Energy [nJ]

Count

50 50

Figure 7: Number of observed faults in the unprotected implementation in function of a
rising energy level of laser shots using a spot size of 28 µm.

4.3 Timing
Our measurements show that the SKINNY encryption begins 307.63 µs after startup and
takes around 3 µs to finish. To define the delay for every round, we stepped over the whole
core with a small step size of 0.05 µs. The received ciphertexts are analyzed in order to
determine in which round the fault originated. We found that we can produce faults in
rounds 26 and 27 when timing the laser to shoot between 310.25 µs and 310.35 µs after the
trigger, while attacks on the last round require a delay of around 310.45 µs to 310.50 µs.
However, the laser itself is not capable of always precisely shooting at the same time,
thus small temporal deviations may occur. Regardless of that technical limitation, we
can consider these timing information for all different SKINNY implementations in the
following as they all are based on the same design architecture and require 33 clock cycles
for one encryption.

4.4 Scan Procedure
We performed 3 different scans in each experiment targeting one of the SKINNY cores.

1. Coarse Full-Chip Scan: At the beginning, we perform a complete scan over the
chip surface to verify the location of the targeted core (which is technically already
known from the chip’s layout). This test is performed with a spot size of 28 µm and
the timing is set to inject faults in the middle of the encryption (we do not need
informative faults at this point). To avoid a bias in the result, we target each spot
three times.

2. Target Core Scan 1: The second scan is also performed with a spot size of 28 µm.
However, it is focused exclusively on the verified core area and timed to inject faults
during the last 0.5 µs of the encryption to collect meaningful outputs for a DFA.
Furthermore, we now perform ten injections at each location.

3. Target Core Scan 2: The third scan is performed with a spot size of 5.6 µm. It is
focused on the verified core area and timed to inject faults during the last 0.5 µs.
The amount of shots is set to twenty per location.

The results of these scans are then analyzed and the chip’s responses can be divided
into multiple categories:

• No Response: the chip did not respond at all,

• Only Zeros: the faults were successfully detected and suppressed by the countermea-
sures (output 0x0),

452 Beware of Insufficient Redundancy

• Correct Ciphertexts: no effective fault could be injected, and

• Unique Faults, a new faulty ciphertext has been received (not seen before). These
responses are of course of primary interest for our analysis.

4.5 DFA Results
The positions of the individual SKINNY cores in the layout and the results of the initial
coarse full-chip scans are depicted in Figure 8. The scan results are shown as heatmaps,
highlighting the fault-sensitive areas that can be identified while each specific SKINNY
core is operated. For all eight experiments, three different regions are shown.

1. The yellow square on the top right: In that area, fault injections lead to the chip
not responding at all. This location is constant for all analyzed circuits. Here lies
control logic for selecting the cipher core to be executed.

2. The 3-5 small red blocks in the middle: If the laser shot is timed towards the end
of the encryption, we receive a list of faulty ciphertexts that are very close to the
correct output. However, we determined that the faulty outputs originate merely
from flipped bits in the final ciphertext while they are saved into the output register.
Of course, such faulty outputs are not useful for a DFA.

3. The larger cohesive red area: This is the location of the targeted SKINNY core. The
correctness of the location can be verified by comparison to the highlighted positions
in the layout.

Thus, we only target the verified SKINNY core locations in the target core scans 1 and 2
in the following.

Unprotected. The target core scans with the large and the small spot size led to about
400 and 1 000 unique and informative faulty ciphertexts, respectively. This translates to a
percentage of 57.6% and 8.1% of unique and informative faulty ciphertexts per attempt.
Here, the term informative means that the faultytexts contain exploitable information
for the DFA. Ciphertext register bit flips, earlier-round faults, detected faults and non-
responses are among the responses that are not counted. With the collected data a full
secret key extraction via DFA required less than one second of computation time.

Duplication. After more than 50 000 fault injection attempts in total, not a single
informative faulty ciphertext was obtained. About 8 000 faults have been detected and the
ciphertext has been suppressed (output 0x0). Approximately 60 times the device did not
respond. However, we will target this SKINNY core by means of SIFA at the end of this
section.

RED 1. Both, the univariate and the multivariate variant of the RED 1 scheme, which is
based on the [5, 4, 2]-code, showed a susceptibility to DFA attacks in our experiments. The
target core scans with the large and the small spot size led to about 10 and 150 unique
and informative faulty ciphertexts for the univariate variant, respectively, and about 20
and 200 for the multivariate variant. In more detail, of all fault injection attempts the
percentage of unique and informative faulty ciphertexts was between 0.3% and 0.4% for
the univariate and 0.5% and 0.9% for the multivariate RED 1. Approximately 18 000 and
20 000 injected faults respectively have been detected and the output 0x0 was generated.
Key extraction via DFA took about 3 seconds in both cases using the collected data. In
summary, both RED 1 variants are susceptible to our LFI attacks as multiple single-bit
faults can be injected simultaneously with either of the spot sizes. This makes sense since

T. Bartkewitz, S. Bettendorf, T. Moos, A. Moradi and F. Schellenberg 453

(a) position unprotected (b) heatmap unprotected (c) position duplication (d) heatmap duplication

(e) position RED 1 (f) heatmap RED 1 (g) position RED 1 multi (h) heatmap RED 1 multi

(i) position RED 3 (j) heatmap RED 3 (k) position RED 3 multi (l) heatmap RED 3 multi

(m) position RED 4 (n) heatmap RED 4 (o) position RED 4 multi (p) heatmap RED 4 multi

Figure 8: Positions of the individual SKINNY cores on the ASIC and heatmaps of the
fault-sensitive areas generated from the initial coarse full-chip scan in each experiment.

the smallest logic gates on the ASIC are around 0.42 µm2 large and therefore much smaller
than either of the laser spot sizes.

RED 3. Our results regarding the univariate and the multivariate variant of the RED 3
scheme are comparable to the RED 1 results, with the main difference being that the
occurrence of unique and informative faulty ciphertext was reduced by approximately a
factor of ten. In more detail, the percentage of useful faulty ciphertexts among all attempts
was between 0.03% and 0.08% for the univariate and between 0.05% and 0.06% for the
multivariate variant. In total, about 40 and 30 unique and informative faulty ciphertexts
have been obtained, as they remained undetected, while about 25 000 and 26 000 injected

454 Beware of Insufficient Redundancy

Table 2: Results of our fault injection experiments targeting the SKINNY cores for key
extraction via DFA using two different spot sizes. Only unique and informative faults are
counted.

SKINNY Core Laser Spot Size Inform. Faults/Attempt Key Extraction

unprotected 28.0 µm 57.5758% 3
5.6 µm 8.0994% 3

duplication 28.0 µm 0.0000% 7
5.6 µm 0.0000% 7

RED 1 28.0 µm 0.3141% 3
5.6 µm 0.4123% 3

RED 1 multivariate 28.0 µm 0.9110% 3
5.6 µm 0.5030% 3

RED 3 28.0 µm 0.0298% 3
5.6 µm 0.0817% 3

RED 3 multivariate 28.0 µm 0.0570% 3
5.6 µm 0.0586% 3

RED 4 28.0 µm 0.0000% 7
5.6 µm 0.0000% 7

RED 4 multivariate 28.0 µm 0.0000% 7
5.6 µm 0.0000% 7

faults have been successfully detected. Key extraction via DFA took about 1 and 3 seconds
using the collected data. In summary, both RED 3 variants are susceptible to our LFI
attacks since a sufficient amount of multiple simultaneous single-bit errors could be injected
with the laser setup in order to circumvent the countermeasure.

RED 4. The RED 4 scheme proved to be the most secure of the code-based fault injection
countermeasures. After more than 140 000 total attempts with different spot sizes not a
single informative faulty ciphertext could be obtained, as all received responses either have
been correct ciphertexts or the output 0x0. This can be explained with the redundancy
of the RED 4 scheme. Any fault in a nibble that is only injected into either the normal
algorithm A or the predictor A′ leads to an incorrect code word. Since A and A′ operate
independently and are implemented in separate modules (although directly next to each
other on the chip), our experiments targeting one spot at a time are not sufficient to inject
undetected faults.

Summary. Our results, especially the precise percentages of unique and informative
faulty ciphertexts among all fault injection attempts for both laser spot sizes, are listed
in Table 2. It is also indicated whether a successful DFA could be performed (3) or not
(7). To summarize, the SKINNY cores with less than 4 bits of redundancy per nibble
(here the codes with n < 2k) are susceptible to simple DFA attacks, while the cores with
4-bit redundancy per nibble (duplication and codes with n ≥ 2k) are robust against such
attacks.

4.6 SIFA Results
In order to demonstrate that detection-based countermeasures which provide solid resistance
to DFA can still be circumvented using SIFA, we will perform such an analysis exemplarily
on the duplication countermeasure. Since we have not received any faulty ciphertexts for
this SKINNY core, a classic DFA is not possible here. However, even if the adversary
is unable to obtain faulty ciphertexts SIFA adversaries can exploit the occurrence of

T. Bartkewitz, S. Bettendorf, T. Moos, A. Moradi and F. Schellenberg 455

SC AC

ART ShiftRows MixColumns

>>>1

>>>2

>>>3

MixColumns

Figure 9: The influence of the round key on the internal state after a round. The red lines
show dependencies on the first byte of the key and the green lines on the second byte.

0.1

0x0
Key Candidates

SEI

0x1 0x2 0x40x3 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0.2

0.3

0.4

0.5

0.6

Figure 10: The result of our SEI test for the different key candidates.

ineffective faults to extract the secret key. For a successful SIFA, we first attempt to
collect responses for a fault injection that is ideally effective in about 50 percent of the
cases (e.g., a 1-bit stuck-at-0 or stuck-at-1 fault). The distribution of intermediate values
that lead to a fault-free ciphertext will then be highly non-uniform. The injected fault
should be reasonably constant over all encryptions to ensure optimal conditions and the
least amount of noise. To ensure this, we choose the 5.6 µm laser spot, knowing that it is
likely to affect fewer bits at once. Since we assume a black-box attacker, we assume that
we have no knowledge about the exact implementation, except for our self-measured LFI
heatmap. Therefore, we do not know where each register is located on the chip, and we
have to blindly try to find a suitable spot for SIFA. Due to the fact that we try to inject
faults in the last round of the encryption, we set the delay of the laser to 310.5 µs. During
our measurements, we shoot a total of 12 000 times and run through 120 different spots.
Since we are looking for a fault that in the best case only effects 50 percent of the cases,
we only consider spots where we received roughly the same number of detections as correct
outputs. The bits marked red in Figure 9 are then targeted for our attack.

The SEI value provides information about the probabilities of the key candidates.
The higher the SEI value, the more likely it is that the key candidate is correct. When
calculating the SEI, two different approaches lead to the same result. The MC and SR
of the penultimate round do not need to be inverted. In our case, we still invert these to
check if we can see some dependencies in row one and two since they are influenced by the
second row of the key register, as shown in Figure 9. Figure 10 illustrates the SEI results
for the different key candidates of the fifth nibble of the internal state. Due to the inverted
SR operation, this nibble does not influence the fifth nibble but the sixth one of the last
round key. As our results show, 0x3 is the correct nibble of the key.

As we already mentioned, we have also examined the other two rows dependent on
the round key. The results are not as clear, but the key nibble is still identified correctly.
The SR operation does not influence the first row, so the nibble position is the same as
the key nibble position. Thus, targeting this one location on the chip already leads to
successful extraction of two nibbles of the last round key and shows that the duplication
countermeasure is susceptible to SIFA.

456 Beware of Insufficient Redundancy

5 Discussions and Conclusions
In this work we have experimentally evaluated the effectiveness of code-based countermea-
sures to provide resistance against Laser Fault Injection (LFI) attacks. In particular, we
have put multiple instances of the block cipher SKINNY equipped with different variants
of the Impeccable Circuits countermeasure on a 40 nm CMOS ASIC. The countermeasure,
as introduced in [AMR+20], relies on Concurrent Error Detection (CED) schemes based
on Error-Detection Codes (EDC). Our analysis of the protected circuits leads us to the
conclusion that using a common laser fault injection setup, without any target-specific
fine-tuning or precise knowledge about the underlying design or layout, it is possible to
reliably inject faults that remain undetected into the SKINNY cores that are protected
by codes with insufficient redundancy. In particular, we find that the SKINNY variants
protected by [5,4,2]- and [7,4,3]-codes do not cover all faults that can trivially be injected
by an LFI adversary. Since the smallest logic gates on the 40 nm ASIC are about 0.42 µm2

in size, they are significantly smaller than typical laser spot sizes (≥ 5.6 µm in our experi-
ments). Thus, LFI adversaries can inject multiple faults in the same region without any
additional effort compared to a single-bit fault injection. Only the most costly version of
the countermeasure based on an [8,4,4]-code provides sufficient protection against DFA
attacks. However, our experiments show that protection against DFA attacks can also
be achieved by implementing a very simple duplication scheme, which requires about
27% less area (resp. 40% less in the multivariate case) and is much easier to implement.
Therefore, we conclude that simple redundancy schemes can be preferable from a cost
efficiency standpoint in a practical setting over complex CED schemes if a single-shot
laser adversary is considered. We would like to stress the importance of verifying the
assumptions and hypotheses, which are made during the design of countermeasures and
used to argue about their security, in real-world experiments. Engineering intuition is not
always sufficient to predict the behavior of semiconductor devices under stress. As solid
examples, we would like to refer to [SRM20, RSM21, DDE+20], where highly complex
designs are proposed to protect against single-bit fault adversaries, which – based on our
experimental investigations – are easy to bypass.

5.1 Larger SKINNY Variants
We would like to stress that, although our experimental investigation concentrates ex-
clusively on the SKINNY-64-64 variant, our main results and conclusions are mostly
independent of the deployed cipher, cipher variant and implementation style. Romulus,
a finalist in the NIST lightweight cryptography competition, instantiates a variant of
SKINNY that is called SKINNY-128-384+, which is a reduced-round SKINNY-128-384
(40 instead of 56 rounds) with a 128-bit block and 384-bit tweakey size [GIK+]. The
interested reader might question whether our results apply in the same manner to this
larger variant. Clearly, the main difference to the SKINNY-64-64 in our experiments is
the use of an 8-bit S-box in SKINNY-128-384+. Thus, different and larger codes need to
be selected when applying the Impeccable Circuits countermeasure. This is discussed in
Section 5.2 of [AMR+20] for the AES 8-bit S-box exemplarily. Yet, there is no conceptual
difference with respect to our main results. As long as the redundancy is smaller than
a state word (n < 2k), an implementation similar to Figure 3(a) instead of Figure 3(b)
is required and the predictor does not operate solely on the signature. In that case it
is always true that some multi-bit faults in the original algorithm cannot be detected
(or corrected). If, however, the redundancy is at least as large as a state word (n ≥ 2k),
the countermeasure will provide much better security, but also be (significantly) more
expensive than simple duplication (c.f., Table 1 of [AMR+20]). While the probability of
occurrence of t simultaneous single-bit faults may decrease for larger t, we observed that
the threshold after which it becomes too small for a successful attack is clearly higher than
8 considering our target and setup.

T. Bartkewitz, S. Bettendorf, T. Moos, A. Moradi and F. Schellenberg 457

5.2 Protection against SIFA
Given our experimental results we suggest that detection-based countermeasures with
sufficient redundancy (duplication or [8,4,4]-code) can provide solid resistance against
DFA adversaries. However, achieving high security levels in practice against both DFA
and SIFA is more challenging. Of course, due to the fact that SIFA is a statistical attack
and that its process requires to collect a certain number of ciphertexts where the injected
fault was ineffective, it can be a reasonable countermeasure to shut down the device or
establish a new key as soon as the first effective fault is detected. For all devices where
such an emergency procedure is not possible we suggest implementing triplication or
quadruplication approaches (or even higher levels of redundancy) with a majority voting to
determine the correct fault-free result (instead of suppressing the output in case of a fault
detection). Such implementations should enable the correction of any number of faults
that is injected into 1 or 2 of the redundant circuits respectively. Thus, simple redundancy
with majority voting is the counterpart to countermeasures based on Error-Correction
Code (ECC) and our results do not inspire confidence that the ECC schemes can be more
resource-friendly, as they likely need full redundancy to provide protection. However,
adversaries who are able to reliably inject multiple symmetric faults into the circuit can
overcome simple redundancy schemes. Alternatively, the adversary may inject a fault on
one of the cores and the other fault on the majority voting module.

Based on our experience we assume that such an attack becomes increasingly unlikely
to succeed the smaller the feature size of the underlying technology is, at least when using
a laser setup. The reason for this assumption is not only that each laser shot will inevitably
affect multiple logic gates at once, but also the increasing level of process variations in
advanced nanometer technologies. Even if two identical circuits are placed right next to
each other in symmetrical fashion they will likely behave differently when exposed to the
same physical effect. Additionally, when synthesizing and implementing a duplication
scheme for example, the original algorithm and the predictor will usually not be realized
by the exact same netlist (e.g. with respect to drive strengths) and will not be placed in
exactly symmetrical fashion (unless enforced by the designer). Thus, injecting symmetrical
faults in a triplication or quadruplication countermeasure with majority voting is expected
to be highly difficult. We believe that permanent fault injections pose a greater threat to
this kind of countermeasure.

Acknowledgments
The work described in this paper has been supported in part by the German Research
Foundation (DFG) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972
and through the project 406956718 ‘SuCCESS’ and by the European Union (EU) through
the ERC project 724725 (acronym SWORD).

References
[ABF+02] Christian Aumüller, Peter Bier, Wieland Fischer, Peter Hofreiter, and Jean-

Pierre Seifert. Fault Attacks on RSA with CRT: Concrete Results and
Practical Countermeasures. In CHES 2002, volume 2523 of Lecture Notes in
Computer Science, pages 260–275. Springer, 2002.

[AMR+20] Anita Aghaie, Amir Moradi, Shahram Rasoolzadeh, Aein Rezaei Shahmirzadi,
Falk Schellenberg, and Tobias Schneider. Impeccable Circuits. IEEE Trans.
Computers, 69(3):361–376, 2020.

458 Beware of Insufficient Redundancy

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the Importance
of Checking Cryptographic Protocols for Faults (Extended Abstract). In
EUROCRYPT 1997, volume 1233 of Lecture Notes in Computer Science,
pages 37–51. Springer, 1997.

[BGV11] Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede. An In-depth and
Black-box Characterization of the Effects of Clock Glitches on 8-bit MCUs.
In FDTC 2011, pages 105–114. IEEE Computer Society, 2011.

[BHJ+17] Jakub Breier, Wei He, Dirmanto Jap, Shivam Bhasin, and Anupam Chat-
topadhyay. Attacks in Reality: the Limits of Concurrent Error Detection
Codes Against Laser Fault Injection. J. Hardw. Syst. Secur., 1(4):298–310,
2017.

[BHL21] Jakub Breier, Xiaolu Hou, and Yang Liu. On Evaluating Fault Resilient
Encoding Schemes in Software. IEEE Trans. Dependable Secur. Comput.,
18(3):1065–1079, 2021.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS. In
CRYPTO 2016, volume 9815 of Lecture Notes in Computer Science, pages
123–153. Springer, 2016.

[BKHL20] Jakub Breier, Mustafa Khairallah, Xiaolu Hou, and Yang Liu. A Counter-
measure Against Statistical Ineffective Fault Analysis. IEEE Trans. Circuits
Syst., 67-II(12):3322–3326, 2020.

[BS90] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosys-
tems. In CRYPTO 1990, volume 537, pages 2–21. Springer, 1990.

[BS97] Eli Biham and Adi Shamir. Differential Fault Analysis of Secret Key Cryp-
tosystems. In CRYPTO 1997, volume 1294 of Lecture Notes in Computer
Science, pages 513–525. Springer, 1997.

[CCD+21] Pierre-Louis Cayrel, Brice Colombier, Vlad-Florin Dragoi, Alexandre Menu,
and Lilian Bossuet. Message-Recovery Laser Fault Injection Attack on the
Classic McEliece Cryptosystem. In EUROCRYPT 2021, volume 12697 of
Lecture Notes in Computer Science, pages 438–467. Springer, 2021.

[CH17] Ang Cui and Rick Housley. BADFET: Defeating Modern Secure Boot Us-
ing Second-Order Pulsed Electromagnetic Fault Injection. In WOOT 2017.
USENIX Association, 2017.

[DBC+18] Jean-Max Dutertre, Vincent Beroulle, Philippe Candelier, Stephan De Castro,
Louis-Barthelemy Faber, Marie-Lise Flottes, Philippe Gendrier, David Hély,
Régis Leveugle, Paolo Maistri, Giorgio Di Natale, Athanasios Papadimitriou,
and Bruno Rouzeyre. Laser Fault Injection at the CMOS 28 nm Technology
Node: an Analysis of the Fault Model. In FDTC 2018, pages 1–6. IEEE
Computer Society, 2018.

[DDE+20] Joan Daemen, Christoph Dobraunig, Maria Eichlseder, Hannes Groß, Florian
Mendel, and Robert Primas. Protecting against Statistical Ineffective Fault
Attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):508–543, 2020.

T. Bartkewitz, S. Bettendorf, T. Moos, A. Moradi and F. Schellenberg 459

[DDR+12] Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, P. Orsatelli, Philippe
Maurine, and Assia Tria. Injection of transient faults using electromagnetic
pulses -Practical results on a cryptographic system-. IACR Cryptol. ePrint
Arch., page 123, 2012.

[DDRT12] Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, and Assia Tria. Elec-
tromagnetic Transient Faults Injection on a Hardware and a Software Imple-
mentations of AES. In FDTC 2012, pages 7–15. IEEE Computer Society,
2012.

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard,
Florian Mendel, and Robert Primas. SIFA: Exploiting Ineffective Fault
Inductions on Symmetric Cryptography. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(3):547–572, 2018.

[ESH+11] Sho Endo, Takeshi Sugawara, Naofumi Homma, Takafumi Aoki, and Akashi
Satoh. An on-chip glitchy-clock generator for testing fault injection attacks.
J. Cryptogr. Eng., 1(4):265–270, 2011.

[GIK+] Chun Guo, Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and
Thomas Peyrin. Romulus v1.3. https://csrc.nist.gov/CSRC/media/
Projects/lightweight-cryptography/documents/finalist-round/
updated-spec-doc/romulus-spec-final.pdf.

[GMJK15] Xiaofei Guo, Debdeep Mukhopadhyay, Chenglu Jin, and Ramesh Karri.
Security analysis of concurrent error detection against differential fault analysis.
J. Cryptogr. Eng., 5(3):153–169, 2015.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic
Analysis: Concrete Results. In CHES 2001, volume 2162 of Lecture Notes in
Computer Science, pages 251–261. Springer, 2001.

[HNT+13] Clemens Helfmeier, Dmitry Nedospasov, Christopher Tarnovsky, Jan Starbug
Krissler, Christian Boit, and Jean-Pierre Seifert. Breaking and entering
through the silicon. In CCS 2013, pages 733–744. ACM, 2013.

[HPS99] Helena Handschuh, Pascal Paillier, and Jacques Stern. Probing Attacks on
Tamper-Resistant Devices. In CHES 1999, volume 1717 of Lecture Notes in
Computer Science, pages 303–315. Springer, 1999.

[IPSW06] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David A. Wagner. Private
Circuits II: Keeping Secrets in Tamperable Circuits. In EUROCRYPT 2006,
volume 4004 of Lecture Notes in Computer Science, pages 308–327. Springer,
2006.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private Circuits: Securing
Hardware against Probing Attacks. In CRYPTO 2003, volume 2729 of Lecture
Notes in Computer Science, pages 463–481. Springer, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In CRYPTO 1999, volume 1666 of Lecture Notes in Computer Science, pages
388–397. Springer, 1999.

[KJP14] Raghavan Kumar, Philipp Jovanovic, and Ilia Polian. Precise fault-injections
using voltage and temperature manipulation for differential cryptanalysis. In
IOLTS 2014, pages 43–48. IEEE, 2014.

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/romulus-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/romulus-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/romulus-spec-final.pdf

460 Beware of Insufficient Redundancy

[KK99] Oliver Kömmerling and Markus G. Kuhn. Design Principles for Tamper-
Resistant Smartcard Processors. In Smartcard. USENIX Association, 1999.

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In CRYPTO 1996, volume 1109 of Lecture Notes
in Computer Science, pages 104–113. Springer, 1996.

[KR10] Mehran Mozaffari Kermani and Arash Reyhani-Masoleh. Concurrent
Structure-Independent Fault Detection Schemes for the Advanced Encryption
Standard. IEEE Trans. Computers, 59(5):608–622, 2010.

[KR11] Mehran Mozaffari Kermani and Arash Reyhani-Masoleh. A Lightweight
High-Performance Fault Detection Scheme for the Advanced Encryption
Standard Using Composite Fields. IEEE Trans. Very Large Scale Integr.
Syst., 19(1):85–91, 2011.

[KSV13] Dusko Karaklajic, Jörn-Marc Schmidt, and Ingrid Verbauwhede. Hardware
Designer’s Guide to Fault Attacks. IEEE Trans. Very Large Scale Integr.
Syst., 21(12):2295–2306, 2013.

[KWMK02] Ramesh Karri, Kaijie Wu, Piyush Mishra, and Yongkook Kim. Concurrent
error detection schemes for fault-based side-channel cryptanalysis of symmet-
ric block ciphers. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.,
21(12):1509–1517, 2002.

[MDH+13] Nicolas Moro, Amine Dehbaoui, Karine Heydemann, Bruno Robisson, and
Emmanuelle Encrenaz. Electromagnetic Fault Injection: Towards a Fault
Model on a 32-bit Microcontroller. In FDTC 2013, pages 77–88. IEEE
Computer Society, 2013.

[MS77] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes.
Mathematical Studies. Elsevier Science, 1977.

[MTN+20] Kohei Matsuda, Sho Tada, Makoto Nagata, Yuichi Komano, Yang Li, Takeshi
Sugawara, Mitsugu Iwamoto, Kazuo Ohta, Kazuo Sakiyama, and Noriyuki
Miura. An IC-level countermeasure against laser fault injection attack by
information leakage sensing based on laser-induced opto-electric bulk current
density. Japanese Journal of Applied Physics, 59(SG):SGGL02, feb 2020.

[OGM17] Sébastien Ordas, Ludovic Guillaume-Sage, and Philippe Maurine. Electromag-
netic fault injection: the curse of flip-flops. J. Cryptogr. Eng., 7(3):183–197,
2017.

[PV04] Dan Page and Frederik Vercauteren. Fault and Side-Channel Attacks on
Pairing Based Cryptography. IACR Cryptol. ePrint Arch., 2004:283, 2004.

[QS02] Jean-Jacques Quisquater and David Samyde. Eddy current for magnetic
analysis with active sensor. Esmart, 09 2002.

[RBMM19] Joaquin Rodriguez, Alex Baldomero, Víctor Montilla, and Jordi Mujal. LLFI:
Lateral Laser Fault Injection Attack. In FDTC 2019, pages 41–47. IEEE,
2019.

[RSM21] Shahram Rasoolzadeh, Aein Rezaei Shahmirzadi, and Amir Moradi. Impecca-
ble Circuits III. In ITC 2021, pages 163–169. IEEE, 2021.

T. Bartkewitz, S. Bettendorf, T. Moos, A. Moradi and F. Schellenberg 461

[SA02] Sergei P. Skorobogatov and Ross J. Anderson. Optical Fault Induction Attacks.
In CHES 2002, volume 2523 of Lecture Notes in Computer Science, pages
2–12. Springer, 2002.

[SBD+20] Thierry Simon, Lejla Batina, Joan Daemen, Vincent Grosso, Pedro Maat Costa
Massolino, Kostas Papagiannopoulos, Francesco Regazzoni, and Niels Samwel.
Friet: An Authenticated Encryption Scheme with Built-in Fault Detection.
In EUROCRYPT 2020, volume 12105 of Lecture Notes in Computer Science,
pages 581–611. Springer, 2020.

[SFG+16] Falk Schellenberg, Markus Finkeldey, Nils Gerhardt, Martin Hofmann, Amir
Moradi, and Christof Paar. Large laser spots and fault sensitivity analysis.
In HOST 2016, pages 203–208. IEEE Computer Society, 2016.

[SFR+15] Falk Schellenberg, Markus Finkeldey, Bastian Richter, Maximilian Schapers,
Nils Gerhardt, Martin Hofmann, and Christof Paar. On the Complexity
Reduction of Laser Fault Injection Campaigns Using OBIC Measurements.
In FDTC 2015, pages 14–27. IEEE Computer Society, 2015.

[SH07] Jörn-Marc Schmidt and Michael Hutter. Optical and EM Fault-Attacks on
CRT-based RSA: Concrete Results. In Austrochip 2007, pages 61–67. Verlag
der Technischen Universität Graz, 2007.

[SHS16] Bodo Selmke, Johann Heyszl, and Georg Sigl. Attack on a DFA Protected
AES by Simultaneous Laser Fault Injections. In FDTC 2016, pages 36–46.
IEEE Computer Society, 2016.

[Sko02] Sergei Skorobogatov. Low temperature data remanence in static RAM.
University of Cambridge Computer Laboratory Technical Report, 536, June
2002.

[SRM20] Aein Rezaei Shahmirzadi, Shahram Rasoolzadeh, and Amir Moradi. Impecca-
ble Circuits II. In DAC 2020, pages 1–6. IEEE, 2020.

[SSHA08] Akashi Satoh, Takeshi Sugawara, Naofumi Homma, and Takafumi Aoki.
High-Performance Concurrent Error Detection Scheme for AES Hardware.
In CHES 2008, volume 5154 of Lecture Notes in Computer Science, pages
100–112. Springer, 2008.

[TMA11] Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali. Differential
Fault Analysis of the Advanced Encryption Standard Using a Single Fault.
In WISTP 2011, volume 6633 of Lecture Notes in Computer Science, pages
224–233. Springer, 2011.

[vWWM11] Jasper G. J. van Woudenberg, Marc F. Witteman, and Federico Menarini.
Practical Optical Fault Injection on Secure Microcontrollers. In FDTC 2011,
pages 91–99. IEEE Computer Society, 2011.

[WJJ+15] Liang Wen, Wei Jiang, Ke Jiang, Xia Zhang, Xiong Pan, and Keran Zhou.
Detecting Fault Injection Attacks on Embedded Real-Time Applications: A
System-Level Perspective. In HPCC 2015, CSS 2015, ICESS 2015, pages
700–705. IEEE, 2015.

[WKKG04] Kaijie Wu, Ramesh Karri, Grigori Kuznetsov, and Michael Gössel. Low Cost
Concurrent Error Detection for the Advanced Encryption Standard. In ITC
2004, pages 1242–1248. IEEE Computer Society, 2004.

462 Beware of Insufficient Redundancy

[YW06] Chih-Hsu Yen and Bing-Fei Wu. Simple Error Detection Methods for Hardware
Implementation of Advanced Encryption Standard. IEEE Trans. Computers,
55(6):720–731, 2006.

	Introduction
	Our Contributions

	Background
	Countermeasures

	Target
	SKINNY
	ASIC Prototype

	Experimental Results
	Setup
	Energy
	Timing
	Scan Procedure
	DFA Results
	SIFA Results

	Discussions and Conclusions
	Larger SKINNY Variants
	Protection against SIFA

